• Title/Summary/Keyword: ${\beta}-Glucosidase$

Search Result 522, Processing Time 0.03 seconds

Possible Roles of LAMMER Kinase Lkh1 in Fission Yeast by Comparative Proteome Analysis

  • Cho, Soo-Jin;Kim, Young-Hwan;Park, Hee-Moon;Shin, Kwang-Soo
    • Mycobiology
    • /
    • v.38 no.2
    • /
    • pp.108-112
    • /
    • 2010
  • To investigate the possible roles of LAMMER kinase homologue, Lkh1, in Schizosaccharomyces pombe, whole proteins were extracted from wild type and lkh1-deletion mutant cells and subjected to polyacrylamide gel electrophoresis. Differentially expressed proteins were identified by tandem mass spectrometry (MS/MS) and were compared with a protein database. In whole-cell extracts, 10 proteins were up-regulated and 9 proteins were down-regulated in the mutant. In extracellular preparations, 6 proteins were up-regulated in the lkh1+ null mutant and 4 proteins successfully identified: glycolipid anchored surface precursor, $\beta$-glucosidase (Psu1), cell surface protein, glucan 1,3-$\beta$-glucosidase (Bgl2), and exo-1,3 $\beta$-glucanase (Exg1). These results suggest that Lkh1 is involved in regulating cell wall assembly.

Characteristics, Mass Transfer Coefficient and Effectiveness Factor of $\beta$-glucosidase Immobilized on the Diazotized Chitin in Bioreactors (Diazotized Chitin에 고정된 $\beta$-glucosidase의 생물반응기에서의 특성, 물질전달계수 및 효율인자에 관한 연구)

  • 김종덕;이경희;서석수
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.20 no.5
    • /
    • pp.494-502
    • /
    • 1991
  • Diazotized chitin(CHITN) as supports of immobilized enzyme, which was obtained by alkaline hydrolysed chitin with NaN3 and HCI was employed to produce CHITN-Gase with glutaraldehyde as bifunctional reagent. Activities of CHITN-Gase were determined with reaction of p-nitro-pheol-$\beta$-D-glucopyranoside(PNG) in plug flow reactor as a reference of CHITA-Gase. Their optimum temperature, pH, Km and Vmax, mass transfer coefficient (h), effctiveness factor(η)were plotted with variation of flow rate and H/D. Mass transfer coefficient(h) of those enzymes increased because of their flux, as flow rates were increased and controlled by reaction rate. Effectiveness factor(η) of both enzymes were nearly 1.0.

  • PDF

Production and Characterization of Multi-Polysaccharide Degrading Enzymes from Aspergillus aculeatus BCC199 for Saccharification of Agricultural Residues

  • Suwannarangsee, Surisa;Arnthong, Jantima;Eurwilaichitr, Lily;Champreda, Verawat
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.10
    • /
    • pp.1427-1437
    • /
    • 2014
  • Enzymatic hydrolysis of lignocellulosic biomass into fermentable sugars is a key step in the conversion of agricultural by-products to biofuels and value-added chemicals. Utilization of a robust microorganism for on-site production of biomass-degrading enzymes has gained increasing interest as an economical approach for supplying enzymes to biorefinery processes. In this study, production of multi-polysaccharide-degrading enzymes from Aspergillus aculeatus BCC199 by solid-state fermentation was improved through the statistical design approach. Among the operational parameters, yeast extract and soybean meal as well as the nonionic surfactant Tween 20 and initial pH were found as key parameters for maximizing production of cellulolytic and hemicellulolytic enzymes. Under the optimized condition, the production of FPase, endoglucanase, ${\beta}$-glucosidase, xylanase, and ${\beta}$-xylosidase was achieved at 23, 663, 88, 1,633, and 90 units/g of dry substrate, respectively. The multi-enzyme extract was highly efficient in the saccharification of alkaline-pretreated rice straw, corn cob, and corn stover. In comparison with commercial cellulase preparations, the BCC199 enzyme mixture was able to produce remarkable yields of glucose and xylose, as it contained higher relative activities of ${\beta}$-glucosidase and core hemicellulases (xylanase and ${\beta}$-xylosidase). These results suggested that the crude enzyme extract from A. aculeatus BCC199 possesses balanced cellulolytic and xylanolytic activities required for the efficient saccharification of lignocellulosic biomass feedstocks, and supplementation of external ${\beta}$-glucosidase or xylanase was dispensable. The work thus demonstrates the high potential of A. aculeatus BCC199 as a promising producer of lignocellulose-degrading enzymes for the biomass conversion industry.

Biological Activities of Phellinus linteus Mycelium Culture with Cassiae Semen Extract on β-Glucuronidase Inhibitory Activity (β-Glucuronidase 저해 활성이 우수한 결명자를 첨가한 상황 균사체 배양액의 생리활성)

  • Oh, Eun-Hee;Park, Jung-Mi;Kim, Sang-Hee;Song, In-Gyu;Han, Nam-Soo;Yoon, Hyang-Sik
    • The Korean Journal of Food And Nutrition
    • /
    • v.25 no.3
    • /
    • pp.620-628
    • /
    • 2012
  • We examined the effects of biological activity Phellinus linteus mycelium culture with cassiae semen extract. Firstly, the optimal temperature, initial pH and culture period for mycelial growth in a liquid culture of P. linteus were determined, and they were $30^{\circ}C$, pH 5.0 and 8 days respectively. The five herbal materials were examined against several health functional efficacies, and, as a result, Cassiae semen was chosen, with its superior inhibitory effects in ${\beta}$-glucuronidase inhibitory activity, electron donating activity, ACE inhibitory, and ${\alpha}$-glucosidase inhibitory activities(95.3%, 80.9%, 96.1 and 24.2%, respectively). P. linteus fruit body was investigated on ${\beta}$-glucuronidase inhibitory activity, electron donating activity, ACE inhibitory, and ${\alpha}$-glucosidase inhibitory activities, and they were 54.7%, 81.9%, 30.0% and 20.1%, respectively. Accordingly, C. semen was used in the following experiment, to give an additive functional effect on the P. linteus. As the amount of C. semen in the cultural media increased, mycelial weight and ${\beta}$-glucan contents also increased, but final pH was not influenced. In addition, the ${\beta}$-glucuronidase inhibitory activity, electron donating activity, and ${\alpha}$-glucosidase inhibitory activity increased. P. linteus mycelium culture showed higher activities in the other three tests above, except for electron donating activity, when C. semen was added to the medium before cultivation.

Increase of Epigallocatechin in Green Tea Extract by Lactic Acid Bacteria Fermentation (젖산균 발효를 통한 녹차 추출물의 Epigallocatechin 함량의 증대)

  • Choi, Chan-Yeong;Park, Eun-Hee;Ju, Yoong-Woon;Kim, Myoung-Dong
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.1
    • /
    • pp.62-67
    • /
    • 2016
  • Hydrolytic enzyme activities, including those of ${\beta}$-glucosidase, ${\beta}$-glucuronidase, ${\beta}$-xylosidase, ${\beta}$-galactosidase, ${\beta}$-arabinofuranosidase, ${\beta}$-arabinosidase, and ${\beta}$-arabinopyranosidase, which are useful for bioconversion, were explored in lactic acid bacteria isolated from Korean traditional fermented foods. Nine bacterial strains were selected for the fermentation of green tea extract prepared by supercritical fluid extraction. Changes in the concentrations of catechin, epicatechin, epicatechin gallate, epigallocatechin, and epigallocatechin-3-gallate in green tea extract were investigated after fermentation by the selected lactic acid bacteria strains. The strain Leuconostoc mesenteroides MBE1424, which showed the highest ${\beta}$-glucuronidase enzyme activity among the tested bacterial strains, increased the epigallocatechin content of the green tea extract by 60%. In addition, L. mesenteroides MBE1424 was more resistant than the control strain at high temperature and showed a maximum specific growth rate at $40^{\circ}C$. L. mesenteroides MBE1424 was presumed to have an enzyme system containing ${\beta}$-glucuronidase with utility in the bioconversion of green tea extract.

Nutritional Components and Physiological Activity of 4 Wild Vegetables (Salvia plebeia R. Br, Angelica acutiloba, Gynura procumbens and Saururus chinensis Baill) Cultivated in Chungbuk Province (충북산 산채 4종(배암차즈기, 일당귀, 명월초 및 삼백초)의 영양성분 및 생리활성)

  • Eom, Hyun-Ju;Jeong, Yu Yeong;Kwon, Nu Ri;Kim, Ki Hyun;Yeon, Eunsol;Yoon, Hyang-Sik;Ryu, Yong-jae;Kim, In Jae
    • The Korean Journal of Food And Nutrition
    • /
    • v.34 no.4
    • /
    • pp.398-406
    • /
    • 2021
  • This study investigated on the nutritional components and physiological activity of four wild vegetables namely Salvia plebeia R. Br., Angelica acutiloba, Gynura procumbens and Saururus chinensis Baill for the development of representative wild vegetables in Chungbuk. Salvia plebeia possessed the highest radical scavenging activity and beta-carotene, but exhibited the lowest α-glucosidase inhibitory activity compared to the other three vegetables. Angelica acutiloba showed high crude protein content and α-glucosidase inhibitory activity, but contained low total polyphenol content, radical scavenging ability and beta-carotene compared to the other three vegetables. Gynura procumbens showed high mineral content, beta-carotene, vitamin K1 content and α-glucosidase inhibitory activity, but showed the lowest total polyphenol content and radical scavenging ability compared to the other three vegetables. Saururus chinensis showed high crude fiber content and total polyphenol content, but contained the lowest mineral and vitamin K1 content. To conclude, it is suggested to use Salvia plebeia or Saururus chinensis as antioxidant food materials and Angelica acutiloba and Gynura procumbens as food materials and sources of α-glucosidase inhibitors. In particular, it is believed that Saururus chinensis, which possessed high content of crude fiber, is suitable for low-calorie food materials such as diet products.

Antioxidant and α-Glucosidase Inhibitory Effect of Tartary Buckwheat Extract Obtained by the Treatment of Different Solvents and Enzymes (용매 종류와 효소 처리에 따른 쓴 메밀 추출물의 항산화 활성 및 α-Glucosidase 저해 활성의 변화)

  • Kim, Ji-Eun;Joo, Sung-Il;Seo, Ji-Hyun;Lee, Sam-Pin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.8
    • /
    • pp.989-995
    • /
    • 2009
  • Extract yield of tartary buckwheat treated with water, 70% ethanol or methanol were about 13.6%, 7.0% and 6.6%, respectively. Extract yield was greatly increased by the treatment of $\alpha$-amylase indicating 95.1% yield. $RC_{50}$ value of DPPH radical scavenging activity with methanol and 70% ethanol extracts were 34.0 $\mu g$/mL, 40.5 $\mu g$/mL, respectively. The DPPH radical scavenging activity increased when it was treated with $\beta$-glucosidase and cellulase, showing $RC_{50}$ value of 24.7 $\mu g$/mL and 25.0 $\mu g$/mL, respectively. In ABTS radical scavenging activity, methanol extract (100 $\mu g$/mL) showed 30% inhibition. In DPPH or ABTS radical scavenging activities, the treatment of $\beta$-glucanase and $\alpha$-amylase shows the highest and the lowest activities, respectively. In $\alpha$-glucosidase inhibitory effect, 70% ethanol extract showed $RC_{50}$ value of 59.9 $\mu g$/mL, but water extract was not inhibitory effective. The $\alpha$-glucosidase inhibitory effect was the highest in multi enzyme treatment. Content of rutin and quercetin in methanol extract showed higher value with 4400.3 mg% and 71.9 mg%, respectively. The 70% ethanol extract of buckwheat contained rutin of 3459.8 mg% and quercetin of 56.9 mg%. In the treatment of $\beta$-glucanase, the rutin content of ethanol extract increased with 5057.4 mg% and multi-enzyme treatment resulted in the modification of rutin glycoside.

Oligomeric Structure of ${\beta}$-Glucosidases

  • Kim, Sang-Yeob;Kimm, In-Soo
    • Journal of Photoscience
    • /
    • v.11 no.3
    • /
    • pp.121-127
    • /
    • 2004
  • The${\beta}$-glucosidases occur widely in all living organisms and has in general a tendency to form oligomers of varying numbers of subunits or aggregates, although the functional implications of such diverse oligomerization schemes remain unclear. In particular, the assembly mode of the oat ${\beta}$-glucosidase is very unique in that it multimerizes by linear stacking of a hexameric building block to form long fibrillar multimers. Some structural proteins such as actin and tubulin assemble into long fibrils in a helical fashion and several enzymes such as GroEL and Pyrodictium ATPase functional complexes, 20S proteasome of the archaebacterium Thermoplasma acidophilum, and lutamine synthetase fromblue-green algae, assemble into discrete oligomers upto 4 stacked rings to maintain their enzymatic activities. In particular, oat ${\beta}$-glucosidase exists in vivo as a discrete long fibrillar multimer assembly that is a novel structure for enzyme protein. It is assembled by linear stacking of hollow trimeric units. The fibril has a long central tunnel connecting to the outer medium via regularly distributed side fenestrations. The enzyme active sites are located within the central tunnel and multimerization increases enzyme affinity to the substrates and catalytic efficiency of the enzyme. Although it is suggested that oligomerization may contribute to the enzyme stability and catalytic efficiency of ${\beta}$-glycosidases, the functional implications of such diverse oligomerization schemes remain unclear so far.

  • PDF

$\alpha$-D-Glucosidase Inhibitor from Streptomyces Sp. (III) - Purification and Stability of the Inhibitor - (Streptomyces속 균주가 생성하는 $\alpha$-D-Glucosidase Inhibitor(III) -저해물질의 정제 및 안정성-)

  • 도재호;주현규
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.5
    • /
    • pp.529-532
    • /
    • 1989
  • A strain of Streptomyces sp. (YS-221-B) extracellularly produced an inhibitory substance for $\alpha$-D-Glucosidase. The substance was purified 96-fold from culture filtrate by dialysis, heat treatment, adsorption on active carbon, Bio-Gel P-10 and Sephadex G-75 column chromatography with yield of 9.2%. The substance was stable in pH range from 7.0 to 11.0 at 37$^{\circ}C$, and a treatment at 10$0^{\circ}C$ for 20 min diminished only 15% of the original activity. The inhibitor was not inactivated by the treatment of $\alpha$-, $\beta$-amylases, glucoamylases, trypsin and chymotrypsin but inactivated by pyoteases from Streptomyces griseus and Tritirachium album.

  • PDF

Physiological Activities of Water Extract and Solvent Fractions of an Edible Mushroom, Pholiota adiposa (검은비늘버섯 물 추출물 및 유기용매 분획물의 생리활성 효과)

  • Kim, Jun-Ho
    • The Korean Journal of Mycology
    • /
    • v.42 no.3
    • /
    • pp.207-212
    • /
    • 2014
  • This study was conducted in order to investigate the physiological activities, including antioxidative, fibrinolytic, thrombin inhibitory, and ${\alpha}$-glucosidase inhibitory activities of the water extract and solvent fractions isolated from Pholiota adiposa. The antioxidative activities of the water extract and water fraction were 57.57% and 48.27%, respectively. The fibrinolytic activity was strong only in the ethyl acetate fraction at 0.70 plasmin units/mL. The ethyl acetate fraction showed high thrombin inhibitory activity, and a-glucosidase inhibitory activity at 77.67% and 89.32%, respectively. The ethyl acetate fraction hydrolyzed both $A{\alpha}$ and $B{\beta}$ subunits of human fibrinogen, but did not show reactivity for the ${\gamma}$ form of human fibrinogen. Fibrinolytic activity of the ethyl acetate fraction was not decreased by heating for 10 min at $100^{\circ}C$.