DOI QR코드

DOI QR Code

Antioxidant and α-Glucosidase Inhibitory Effect of Tartary Buckwheat Extract Obtained by the Treatment of Different Solvents and Enzymes

용매 종류와 효소 처리에 따른 쓴 메밀 추출물의 항산화 활성 및 α-Glucosidase 저해 활성의 변화

  • Kim, Ji-Eun (Dept. of Food Science and Technology, Keimyung University) ;
  • Joo, Sung-Il (Dept. of Food Science and Technology, Keimyung University) ;
  • Seo, Ji-Hyun (The Center for Traditional Microorganism Resources (TMR), Keimyung University) ;
  • Lee, Sam-Pin (Dept. of Food Science and Technology, Keimyung University)
  • 김지은 (계명대학교 식품가공학과) ;
  • 주성일 (계명대학교 식품가공학과) ;
  • 서지현 (계명대학교 전통미생물자원개발 및 산업화연구센터) ;
  • 이삼빈 (계명대학교 식품가공학과)
  • Published : 2009.08.31

Abstract

Extract yield of tartary buckwheat treated with water, 70% ethanol or methanol were about 13.6%, 7.0% and 6.6%, respectively. Extract yield was greatly increased by the treatment of $\alpha$-amylase indicating 95.1% yield. $RC_{50}$ value of DPPH radical scavenging activity with methanol and 70% ethanol extracts were 34.0 $\mu g$/mL, 40.5 $\mu g$/mL, respectively. The DPPH radical scavenging activity increased when it was treated with $\beta$-glucosidase and cellulase, showing $RC_{50}$ value of 24.7 $\mu g$/mL and 25.0 $\mu g$/mL, respectively. In ABTS radical scavenging activity, methanol extract (100 $\mu g$/mL) showed 30% inhibition. In DPPH or ABTS radical scavenging activities, the treatment of $\beta$-glucanase and $\alpha$-amylase shows the highest and the lowest activities, respectively. In $\alpha$-glucosidase inhibitory effect, 70% ethanol extract showed $RC_{50}$ value of 59.9 $\mu g$/mL, but water extract was not inhibitory effective. The $\alpha$-glucosidase inhibitory effect was the highest in multi enzyme treatment. Content of rutin and quercetin in methanol extract showed higher value with 4400.3 mg% and 71.9 mg%, respectively. The 70% ethanol extract of buckwheat contained rutin of 3459.8 mg% and quercetin of 56.9 mg%. In the treatment of $\beta$-glucanase, the rutin content of ethanol extract increased with 5057.4 mg% and multi-enzyme treatment resulted in the modification of rutin glycoside.

쓴 메밀의 용매에 따른 추출수율은 물 추출물이 39.0%, 70% 에탄올 추출물이 7.0%, 100% 메탄올 추출물이 6.6%로 물 추출 시 수율이 가장 높았으며 효소처리에 의해 추출수율이 크게 향상되어 $\alpha$-amylase 처리 시 95.1%로 가장 높아 가용성 고형분의 함량이 증가하였다. DPPH radical 소거 활성 측정 결과 메탄올과 에탄올 추출물의 $RC_{50}$ 값이 각각 34.0 $\mu g$/mL, 40.5 $\mu g$/mL로 높은 활성을 지닌 것으로 나타났으며, 효소 처리에 의해 활성이 증가되어 $\beta$-glucosidase 처리구와 cellulase 처리구의 $RC_{50}$ 값이 각각 32.3 $\mu g$/mL, 33.0 $\mu g$/mL 으로 나타났다. ABTS radical 소거 활성 측정 결과 100 $\mu g$/mL의 농도에서 메탄올, 70% 에탄올 추출물이 30%가 넘는 활성을 보였으며, 물 추출물의 소거 활성은 낮았고 효소 처리에 의해 활성이 증가하여 $\alpha$-amylase 처리구를 제외한 모든 효소 처리구의 활성이 대조구인 70% 에탄올 추출구보다 활성이 우수하였다. Hydrogen peroxide 소거 활성 측정 결과 $RC_{50}$ 값이 메탄올 추출물이 32.3 $\mu g$/mL, 70% 에탄올 추출물이 35.9 $\mu g$/mL로 높은 소거 활성을 가지는 것으로 나타났으며 효소처리에 의해 소거 활성이 증가하는 것으로 나타났으나 효소 종류에 따른 유의적인 차이는 없었다. 쓴 메밀 추출물의 $\alpha$-glucosidase 저해 활성은 에탄올 추출물의 $RC_{50}$ 값이 59.9 $\mu g$/mL로 가장 높은 저해 활성을 보였으며 $\alpha$-amylase 처리구가 저해 활성이 가장 높았다. HPLC 분석 결과 메탄올 추출물의 rutin 함량이 4,400.3 mg/100 g, quercetin 함량이 71.9 mg/100 g으로 가장 많은 양의 rutin과 quercetin을 함유하고 있는 것으로 나타났으며, 에탄올 추출물 또한 rutin과 quercetin의 함량이 각각 3,459.8 mg/100 g과 56.9 mg/100 g으로 메탄올 추출물과 비슷한 양을 함유하고 있었으며 물 추출물은 상대적으로 적은 양을 함유하고 있었다. 가수분해 효소 처리 시 $\beta$-glucanase 처리구의 rutin의 함량이 5,057.4 mg/100 g으로 가장 높았다. 결과적으로 쓴 메밀의 메탄올과 에탄올 추출물은 항산화 활성이 뛰어나며 항 당뇨에도 효과가 있으며, 효소 처리에 의해 쓴 메밀에서의 수용성 고형분 함량이 크게 증가하며 항산화 활성과 $\alpha$-glucosidase 저해 활성이 증가하는 것으로 나타났다.

Keywords

References

  1. Maeng YS, Park HK, Kwon TB. 1990. Analysis of rutin contents in buckwheat and buckwheat foods. Korean J Food Sci Technol 22: 732-737
  2. Lee MS, Sohn KH. 1992. Studies on electrophoretic pattern and amino acid of buckwheat protein. Korean J Soc Food Sci 8: 379-385
  3. Park JI, Chang KJ, Kang YK, Park BJ, Park CH. 2007. Local adaptability of tatary buckwheat (Fagopyrum tataricum) in Korea. Korean J Intl Agric 19: 191-195
  4. Choi M, Kim JD, Park KS, Oh SY, Lee SY. 1991. Effect of buckwheat supplementation on blood glucose levels and blood pressure in rat. J Korean Soc Food Nutr 20: 300-305
  5. Choi YS, Ahn C, Shim HH, Choe M, Oh SY, Lee SY. 1992. Effect of instant buckwheat noodle on digestibility and lipids profiles of liver and serum in rats. J Korean Soc Food Nutr 21: 478-483
  6. Lee JS, Park SJ, Sung KS, Han CK, Lee MH, Jung CW, Kwon TB. 2000. Effect of germinated buckwheat on blood pressure plasma glucose and lipid levels of spontaneously hypertensive rats. Korean J Food Sci Technol 32: 206-211
  7. Lee JS, Maeng YS, Chang YK, Ju JS. 1994. Effects of buckwheat on organ weight, glucose and lipid metabolism in streptozotocin induced diabetic rats. Korean J Nutr 27: 819-827
  8. Kim SK, Ban SY, Kim JS, Chung SK. 2005. Change of antioxidant activity and antioxidant compounds in Saururus chinensis by extraction conditions. J Korean Soc Appl Biol Chem 48: 89-92
  9. Kim NM, Lee JS, Lee BH. 1999. Effects of ${\beta}-amylase$ and trans glucosidase on the qualities of red ginseng extract. J Ginseng Res 23: 93-98
  10. Kim MJ, Lim KR, Jung TK, Yoon KS. 2007. Anti-aging effects of Astragalus membranaceus root extract. J Soc Cosmet Korea 33: 33-40
  11. Kim BY, Lee CG, Whang WK, Huh JD. 1989. Studies on the extraction of active components in Ginkgo biloba leaves by enzyme treatments. Korean J Pharmacogn 20: 43-47
  12. Blois MS. 1958. Antioxidant determinations by the use of a stable free radical. Nature 181: 1198-1200 https://doi.org/10.1038/1811199a0
  13. Re R Pellegrini N, Proteggente A, Pannlala A, Yang M, Rice-Evans C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26: 1231-1237 https://doi.org/10.1016/S0891-5849(98)00315-3
  14. Muller HE. 1985. Detection of hydrogen peroxide produced by microorganism on ABTS-peroxidase medium. Zentralbl Bakteriol Mikrobiol Hyg A 259: 151-154
  15. Kim BN, Park HK, Kwon TB, Maeng YS. 1991. Analysis of rutin contents in buckwheat noodles. Korean J Soc Food Sci 7: 61-66
  16. Sreel RGD, Torrie JH. 1990. Principles and procedures of satistics. McGraw Hill, New York, USA
  17. Yoo KH. 2008. Studies on development of buckwheat noodles and biological activities for the quality standardization. PhD Dissertation. Kangwon National University, Gangwon
  18. Shin DM, Hawer WD, Lee YC. 2007. Effects of enzyme treatments on yield and flavor compounds of garlic extracts. Korean J Food Sci Technol 39: 276-282
  19. Grassin C. 1993. Enzymatic liquefaction of apples. Fruit Process 7: 1-6
  20. Nieva MM, Sampietro AR, Vattuone MA. 2000. Comparison of the free radical-savenging activity of propolis from several regions of Argentina. J Ethnopharmacol 71: 109-114 https://doi.org/10.1016/S0378-8741(99)00189-0
  21. Yoon I, Wee JH, Moon JH, Ahn TH, Park KH. 2003. Isolation and identification of quercetin with antioxidative activity from fruits of Rubus coreanum Miquel. Korean J Food Sci Technol 35: 499-502
  22. Kim KN, Heo SJ, Song CB, Lee JH, Heo MS, Yeo IK, Kang KA, Hyun JW, Jeon YJ. 2006. Protective effect of Ecklonia cava enzymatic extracts on hydrogen peroxide-induced cell damage. Process Biochem 41: 2393-2401 https://doi.org/10.1016/j.procbio.2006.06.028
  23. Kim YC, Cho CW, Rhee YK, Yoo KM, Rho JH. 2007. Antioxidant activity of ginseng extracts prepared by enzyme and heat treatment. J Korean Soc Food Sci Nutr 36: 1482-1485 https://doi.org/10.3746/jkfn.2007.36.11.1482
  24. Rice-Evans CA, Miller NJ, Paganga G. 1993. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med 20: 933-956 https://doi.org/10.1016/0891-5849(95)02227-9
  25. Casa CL, Villegas I, Alarcon de la Lasta, C Motilva V, Martin Calero MJ. 2000. Evidence for protective and antioxidant properties of rutin, a natural flavone, against ethanol induced gastric lesions. J Ethnopharmacology 71: 45-53 https://doi.org/10.1016/S0378-8741(99)00174-9
  26. Park SS, Yu KH, Min TJ. 1988. Antioxidant activities of extract from fruiting bodies of mushrooms. Korean J Mycology 26: 69-77
  27. Yang J, Guo J, Yuan J. 2008. In vitro antioxidant properties of rutin. LWT-Food Sci Technol 41: 1060-1066 https://doi.org/10.1016/j.lwt.2007.06.010
  28. Cho YJ, Ju IS, Kim BC, Lee WS, Kim MJ, Lee BG, An BJ, Kim JH, Kwon OJ. 2007. Biological activity of Omija (Schizandra chinensis Baillon) extracts. J Korean Soc Appl Biol Chem 50: 198-203
  29. Lee DS, Kim JG, Lee SH. 2006. Inhibition of $\alpha$-glucosidase activity by quercetin. Korea J Microbiol Biotechnol 34: 368-372
  30. Park BJ, Kwon SM, Park JI, Chang KJ, Park CH. 2005. Phenolic compounds in common and tartary buckwheat. Korean J Crop Sci 50: 175-180
  31. Back DM. 2000. Studies on optimal extraction condition for flavonoids from citrus junos and free radical scavenging activities of citrus flavonoids. MS Thesis. Yonsei University, Seoul
  32. Moon HI, Ahn KT, Lee KR, Zee OP. 2000. Flavonoids compounds and biological activities on the aerial parts of Angelica gigas. Yakhak Hoeji 44: 119-127
  33. Markaverich BM, Roberts RR, Alejandro MA, Johnan GA, Middleditch BS, Clark JM. 1998. Bioflavonoid interaction with rat uterine type II binding sites growth inhibition. J Steroid Biochem 30: 71-78 https://doi.org/10.1016/0022-4731(88)90078-7
  34. Edenhader R, Tang X. 1996. Inhibition of the mutagenicity of 2-nitrofluorence, 3-nitrofluoranthene and I-nitropyrene by flavonoids, coumarins, quinones and other phenolic compounds. Food Chem Toxicol 35: 357-372 https://doi.org/10.1016/S0278-6915(97)00125-7
  35. Veckenstedt A, Beladi I, Musci I. 1978. Effect of treatment with certain flavonoids mengo virus-induced encephalitis in mice. Arch Virol 57: 255-260 https://doi.org/10.1007/BF01315089
  36. Younes M, Siegers CP. 1981. Inhibitory action of some flavonoids on enhanced spontaneous lipid peroxidation fellowing glutathione depletion. Planta Med 43: 240-244 https://doi.org/10.1055/s-2007-971503

Cited by

  1. Physicochemical and Antioxidant Properties of Red Ginseng Marc Fermented by Bacillus subtilis HA with Mugwort Powder Addition vol.39, pp.9, 2010, https://doi.org/10.3746/jkfn.2010.39.9.1391
  2. Physiological Activities of Rubus coreanus Miq. Extracts Using Different Extraction Methods vol.28, pp.1, 2012, https://doi.org/10.9724/kfcs.2012.28.1.025
  3. Composition and antioxidative properties of the flavonoid-rich fractions from tartary buckwheat grains vol.19, pp.3, 2010, https://doi.org/10.1007/s10068-010-0100-4
  4. Antioxidant and α-Glucosidase Inhibition Activities of Solvent Fractions from Methanolic Extract of Sericea Lespedeza (Lespedeza cuneata G. Don) vol.41, pp.11, 2012, https://doi.org/10.3746/jkfn.2012.41.11.1508
  5. Changes in Physicochemical Characteristics and Antioxidant Activity of Adzuki Bean and Adzuki Bean Tea Depending on the Variety and Roasting Time vol.45, pp.3, 2013, https://doi.org/10.9721/KJFST.2013.45.3.317
  6. Physicochemical Characteristics of the Muffin Added Glutinous and Non-glutinous Sorghum(Sorghum bicolor L. Moench) Powder vol.25, pp.3, 2012, https://doi.org/10.9799/ksfan.2012.25.3.490
  7. Effects of the Drainage Methods on Phenolic Compounds and Radical Scavenging Activity of Foxtail Millet and Proso Millet vol.59, pp.3, 2014, https://doi.org/10.7740/kjcs.2014.59.3.282
  8. Inhibitory Effects of Ethanol Extracts from Polygoni multiflori radix and Cynanchi wilfordii radix on Melanogenesis in Melanoma Cells vol.40, pp.8, 2011, https://doi.org/10.3746/jkfn.2011.40.8.1086
  9. Production and Characteristics of Cello- and Xylo-oligosaccharides by Enzymatic Hydrolysis of Buckwheat Hulls vol.48, pp.3, 2016, https://doi.org/10.9721/KJFST.2016.48.3.201
  10. Physicochemical Characteristics of Vinegars Fermented from Cereal Crops with Incalgyun vol.39, pp.8, 2010, https://doi.org/10.3746/jkfn.2010.39.8.1171
  11. Enhancing the Organoleptic and Functional Properties of Jujube by a Quick Aging Process vol.18, pp.1, 2013, https://doi.org/10.3746/pnf.2013.18.1.050
  12. Antioxidant Properties of Adzuki Beans, and Quality Characteristics of Sediment according to Cultivated Methods vol.29, pp.1, 2016, https://doi.org/10.9799/ksfan.2016.29.1.134
  13. Antioxidant Compounds and Activities of Foxtail Millet, Proso Millet and Sorghum with Different Pulverizing Methods vol.40, pp.6, 2011, https://doi.org/10.3746/jkfn.2011.40.6.790
  14. Antioxidant Compounds and Antioxidant Activities of Sweet Potatoes with Cultivated Conditions vol.41, pp.4, 2012, https://doi.org/10.3746/jkfn.2012.41.4.519
  15. Screening of Biological Activities to Different Ethanol Extracts of Rubus coreanus Miq. vol.19, pp.5, 2011, https://doi.org/10.7783/KJMCS.2011.19.5.325
  16. Antioxidant Activities of Solvent Fractions from Methanolic Extract of Cockscome (Celosia cristata L.) Flowers vol.41, pp.11, 2012, https://doi.org/10.3746/jkfn.2012.41.11.1502
  17. Antioxidant Activity and α-Glucosidase Inhibitory Effect of Jerusalem Artichoke (Helianthus tuberosus) Methanol Extracts by Heat Treatment Conditions vol.19, pp.4, 2011, https://doi.org/10.7783/KJMCS.2011.19.4.257
  18. The Study on toxicity and biological activities of Aconiti ciliare tuber Pharmacopuncture in Rats Original Articles vol.14, pp.1, 2011, https://doi.org/10.3831/KPI.2011.14.1.025
  19. Effects of Cultivated Area on Antioxidant Compounds and Antioxidant Activities of Sorghum (Sorghum bicolor L. Moench) vol.40, pp.11, 2011, https://doi.org/10.3746/jkfn.2011.40.11.1512
  20. Phenolic Compounds and Radical Scavenging Activity of the Korean Wheat (Triticum aestivum L.) according to Germination Times vol.28, pp.5, 2015, https://doi.org/10.9799/ksfan.2015.28.5.737
  21. Biological Activities of Scolopendrid Pharmacopuncture vol.13, pp.3, 2010, https://doi.org/10.3831/KPI.2010.13.3.005
  22. Antioxidant activity and inhibition activity against α-amylase and α-glucosidase of Smilax China L. vol.21, pp.2, 2014, https://doi.org/10.11002/kjfp.2014.21.2.254
  23. Changes in Antioxidant Contents and Activities of Adzuki Beans according to Germination Time vol.44, pp.5, 2015, https://doi.org/10.3746/jkfn.2015.44.5.687
  24. Physicochemical and Sensory Properties of Red Pepper Extract treated with Enzyme Complex vol.28, pp.4, 2015, https://doi.org/10.9799/ksfan.2015.28.4.628
  25. Functional Components and Radical Scavenging Activity of Germinated Brown Rice according to Variety vol.29, pp.2, 2016, https://doi.org/10.9799/ksfan.2016.29.2.145
  26. Biological Activity of Methanolic Extract from Ganoderma lucidum, Momordica charantia, Fagopyrum tataricum, and Their Mixtures vol.21, pp.7, 2011, https://doi.org/10.5352/JLS.2011.21.7.1016
  27. Antioxidant Compounds and Antioxidant Activities of Different Varieties of Foxtail Millet and Proso Millet according to Cultivation Time vol.41, pp.3, 2012, https://doi.org/10.3746/jkfn.2012.41.3.302
  28. Comparison of Antioxidant and Physiological Properties of Jerusalem Artichoke Leaves with Different Extraction Processes vol.42, pp.1, 2013, https://doi.org/10.3746/jkfn.2013.42.1.068
  29. Whitening and Antioxidant Activities of Solvent Extracts from Hot-Air Dried Allium hookeri vol.44, pp.6, 2015, https://doi.org/10.3746/jkfn.2015.44.6.832
  30. Biological Activities of Hominis Placenta Herbal Acupuncture prepared by Hydrochloric Acid Hydrolysis vol.13, pp.2, 2010, https://doi.org/10.3831/KPI.2010.13.2.005
  31. Antioxidant Compounds and Antioxidant Activities of the Methanolic Extracts from Milling Fractions of Sorghum (Sorghum bicolor L. Moench) vol.39, pp.11, 2010, https://doi.org/10.3746/jkfn.2010.39.11.1695
  32. Effects of Complex Carbohydrase Treatment on Physiological Activities of Pear Peel and Core vol.43, pp.3, 2014, https://doi.org/10.3746/jkfn.2014.43.3.404
  33. Effects of the Cultivated Areas on Antioxidant Compounds and Activities of Proso Millet (Panicum miliaceum L.) vol.56, pp.4, 2011, https://doi.org/10.7740/kjcs.2011.56.4.315
  34. Effects of the Drainage Methods on Antioxidant Compounds and Antioxidant Activity of Ethanolic Extracts on Adzuki Bean vol.59, pp.3, 2014, https://doi.org/10.7740/kjcs.2014.59.3.350
  35. Antioxidant Activities of Cedrela sinensis Hydrolysates Prepared Using Various Enzymes vol.47, pp.4, 2015, https://doi.org/10.9721/KJFST.2015.47.4.413
  36. Anti-aging and Anti-diabetes Effects of Aconitum pesudo-laeve var. erectum Extracts vol.23, pp.5, 2013, https://doi.org/10.5352/JLS.2013.23.5.616
  37. Quality and Antioxidant Activity of Yanggaeng Containing Herbal Medicine Extracts for the Elderly vol.44, pp.9, 2015, https://doi.org/10.3746/jkfn.2015.44.9.1304
  38. Quality Characteristics of Tomato Packaged with Functional Film Applied to Essential Oil of Artemisia Princeps Pampanini vol.30, pp.6, 2015, https://doi.org/10.7318/KJFC/2015.30.6.766
  39. Physicochemical and antioxidant properties of rice cooked with different proportions of black soybeans and cooking methods pp.01458884, 2018, https://doi.org/10.1111/jfbc.12671
  40. Quality Characteristics and Antioxidant Activities of Rice/Adzuki Bean Mixtures Cooked Using Two Different Methods vol.2018, pp.1745-4557, 2018, https://doi.org/10.1155/2018/4874795
  41. Evaluation of bioactive compounds in different tissues of sprouting okra vol.58, pp.5, 2009, https://doi.org/10.1007/s13580-017-0261-7
  42. 보리수 열매 식초 발효 중 이화학적 특성, phytochemical 함량 및 생리활성 변화 vol.24, pp.1, 2017, https://doi.org/10.11002/kjfp.2017.24.1.125
  43. 국내 유통 혼합잡곡 제품의 품질 및 항산화 특성 vol.30, pp.1, 2009, https://doi.org/10.9799/ksfan.2017.30.1.031
  44. 기장 첨가 잡곡밥의 취반 및 항산화 특성에 미치는 취반방법의 영향 vol.30, pp.2, 2017, https://doi.org/10.9799/ksfan.2017.30.2.218
  45. 수수의 종자와 새싹채소의 기능성분 분석 vol.25, pp.2, 2009, https://doi.org/10.11625/kjoa.2017.25.2.499
  46. 찹쌀 첨가와 취반방법에 따른 취반 밥의 품질 및 항산화특성 vol.62, pp.2, 2009, https://doi.org/10.7740/kjcs.2017.62.2.096
  47. 발아현미 첨가 밥의 취반 및 산화방지 특성에 미치는 취반방법의 영향 vol.49, pp.3, 2009, https://doi.org/10.9721/kjfst.2017.49.3.311
  48. 발아 조와 기장 첨가 밥의 호화 및 항산화 특성 vol.30, pp.3, 2009, https://doi.org/10.9799/ksfan.2017.30.3.482
  49. 혼합잡곡 첨가 취반 밥의 품질 및 항산화특성 vol.62, pp.4, 2009, https://doi.org/10.7740/kjcs.2017.62.4.352
  50. 추출용매에 따른 영지버섯(Ganoderma lucidum)의 항산화 및 소화효소 저해활성 vol.25, pp.1, 2009, https://doi.org/10.11002/kjfp.2018.25.1.124
  51. 열처리 보리수 과즙과 식초의 이화학적 특성, phytochemicals 및 생리활성 vol.25, pp.1, 2009, https://doi.org/10.11002/kjfp.2018.25.1.52
  52. Cooking Characteristics and Antioxidant Activity of Rice-Barley Mix at Different Cooking Method and Mixing Ratio vol.23, pp.1, 2009, https://doi.org/10.3746/pnf.2018.23.1.52
  53. Portulaca oleracea L. Extract Lowers Postprandial Hyperglycemia by Inhibiting Carbohydrate-digesting Enzymes vol.28, pp.4, 2009, https://doi.org/10.5352/jls.2018.28.4.421
  54. 쿼세틴 복합체의 생물학적 이용성 향상을 위한 양파 추출물의 유산균 발효 vol.50, pp.4, 2009, https://doi.org/10.9721/kjfst.2018.50.4.391
  55. 가바와 비당체 이소플라본이 증가된 Lactobacillus brevis 발효 콩-분말 두유의 생리활성 증진 효과 vol.61, pp.3, 2009, https://doi.org/10.3839/jabc.2018.036
  56. Leuconostoc mesenteroidesies 균주를 이용한 여주 추출물 발효 및 생산물의 생리활성 특성 vol.35, pp.4, 2009, https://doi.org/10.12925/jkocs.2018.35.4.1250
  57. 선씀바귀 추출물의 항산화 및 항당뇨 효과 vol.53, pp.3, 2020, https://doi.org/10.4163/jnh.2020.53.3.244
  58. Effect of amaranth seed extracts on glycemic control in HepG2 cells vol.54, pp.6, 2009, https://doi.org/10.4163/jnh.2021.54.6.603
  59. 미숙감귤의 항산화 및 항노화 활성에 대한 평가 vol.36, pp.1, 2009, https://doi.org/10.6116/kjh.2021.36.1.77.
  60. ‘Keunpum’: A Mid-Late Maturing, High Yielding, Giant Embryo Rice Cultivar with Resistance to Multiple Diseases and Used as Germinated Brown Rice vol.53, pp.4, 2009, https://doi.org/10.9787/kjbs.2021.53.4.515