• Title/Summary/Keyword: ${\beta}-Fe_2O_3$

Search Result 90, Processing Time 0.025 seconds

Hydroxylation of Phenol over (Fe, Co)/Zeolite Catalysts for the Selective Synthesis of Catechol (카테콜의 선택적 합성을 위한(Fe, Co)/Zeolites 촉매상에서 페놀의 수산화 반응)

  • Park, Jung-Nam;Shin, Chae-Ho;Baeg, Jin-Ook;Lee, Chul Wee
    • Korean Chemical Engineering Research
    • /
    • v.44 no.4
    • /
    • pp.387-392
    • /
    • 2006
  • (Fe, Co)/zeolite catalysts such as (Fe, Co)/NaY, (Fe, Co)/NaBeta and (Fe, Co)/HUSY were prepared by ion-exchange method and their catalytic performance was examined in the hydroxylation of phenol with $H_2O_2$ for the production of catechol. The (Fe, Co)/NaBeta catalyst showed its best performance at reaction temperature=$70^{\circ}C$, molar ratio of phenol/$H_2O_2=3$, weight ratio of phenol/catalyst=50 and weight ratio of solvent (water)/phenol=6 as 20% of phenol conversion, 77% of the selectivity for the hydroxylation, 70% of the selectivity for catechol, and 2.5 of the formation ratio of catechol/hydroquinone. The (Fe, Co)/zeolite catalysts showed the reproducible activities without deactivation after repeated regeneration. The fresh and used(Fe, Co)/zeolites were characterized by XRD, UV-VIS DRS, and XPS and their catalytic performance was discussed based on these characterization results.

Synthesis of $\beta$-Sialon Powder from Fly Ash (Fly Ash를 이용한$\beta$-Sialon 분말합성)

  • 최희숙;노재승;서동수
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.8
    • /
    • pp.871-876
    • /
    • 1996
  • It is believed that fly ash could be suitable for preparing the sialon by carbothermal reduction method because the total amount of SiO2 and Al2O3 is above 80% and the unburned residual carbon is above 5% within the fly ash. The effects of reaction temperature (1350, 1400, 145$0^{\circ}C$) reaction time (1, 5, 10 hours) and the amount of carbon additions (C/SiO2=2, 3, 4 mole) on the $\beta$-sialon synthesis were obserbed, It was conformed that $\beta$-sialon (Z=2.15~2.18) was formed as major phase under all of the synthesis conditions and small amount of Si2ON2 SiC, AlN and Si3N4 was formed depending on the synthesis conditions. FeSix intermetal-lic compound was formed above 140$0^{\circ}C$ reaction temperature due to the large amount of iron oxides within the raw fly ash.

  • PDF

A Study on Synthesis of High Purity $\beta$-SiC Fine Powders from Ethyl Silicate(III) Effect of Additives (Ethyl Silicate를 이용한 고순도 $\beta$-SiC 미분말 합성에 관한 연구(III) 첨가제의 영향)

  • 최용식;박금철
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.3
    • /
    • pp.416-422
    • /
    • 1989
  • The particle size of synthesized SiC powders was decreased with increasing carbon content when the mixture of carbon and silica was carbonized at 1, 45$0^{\circ}C$ after hydrolysis of the mixture with the ranges of 3.1 to 3.5 in the mole ratio of Carbon/Alkoxide. The reacted fraction of $\beta$-SiC nearly had nothing to do with the mole ratio of Carbon/Alkoxide. When the reaction was made by adding 0.5wt% additives in the composition of 3.1 in the mole ratio of carbon/alkoxide, the additives decreased the yield of $\beta$-SiC and its sequence was Ba2O3>B>Fe>Al>Al2O3>Si. The effect of additives promoted the transformation of $\beta$-SiC to $\alpha$-SiC form and shwoed the increasing tendency of lattice constant. The two colors of $\beta$-SiC powder came out : one was the black grey with addition of Al, Al2O3 and B the other the light grey with addition of Fe, B2O3 and Si.

  • PDF

Oxidation of trans-[FeH(NCS(Me)-S)(dppe)2]I to trans trans-[FeNCS)2(Ph2P(O)CH2CH2P(O)Ph2)2][I3](dppe=PPh2CH2CH2PPh2) (trans-[FeH(NCS(Me)-S)(dppe)2]I 화합물의 trans-[FeNCS)2(Ph2P(O)CH2CH2P(O)Ph2)2][I3]로 산화)

  • Lee, Ji Hwa;Lee, Soon W.
    • Journal of the Korean Chemical Society
    • /
    • v.44 no.4
    • /
    • pp.311-315
    • /
    • 2000
  • The Fe(II)-isothiocyanato complex $trans-[FeH(NCS)(dppe)_2]$ (1) eactedwith iodomethane(Mel) to give methyl isothiocyanide-Fe(n) complex, $trans-FeH(NCS(Me)-S)(dppe)_2]I(2)$. Compound 2 was oxidized to $trans-[Fe(NCS)_2(Ph_2P(O)CH_2CH_2P(O)Ph_2)_2][I_3]$ (3), which was structurally characterized by X-ray diffraction. The molecular structure of 3 showed a bent Fe-NCS group, Crystallographic data for 3: triclinic space group P1,a=11.071(2) A,b=12.054(2)A,c=12.121(1)A, $\alpha=101.02(1){\circ}C{\beta}=95.887(9){\circ}Cr=110.34(1){\circ}C$, $Z=1R(wR_2)=0.0567(0.1294)$.

  • PDF

Toxic Levels of Amyloid Beta Peptide Do Not Induce VEGF Synthesis

  • Park, Sun-Young;Chae, Chi-Bom
    • Molecules and Cells
    • /
    • v.24 no.1
    • /
    • pp.69-75
    • /
    • 2007
  • Alzheimer's disease is a neurodegenerative disorder associated with progressive loss of cognitive function and memory. Amyloid beta peptide ($A{\beta}$) is the major component of senile plaques and is known to exert its cytotoxic effect mainly by producing $H_2O_2$. Vascular endothelial growth factor (VEGF) is elevated in the cerebrospinal fluid (CSF) and brain of AD patients, and $H_2O_2$ is one of the factors that induce VEGF. Therefore, we tested whether $A{\beta}$ might be responsible for the increased VEGF synthesis. We found that $A{\beta}$ induced the production of $H_2O_2$ in vitro. Comparison of the amount of $H_2O_2$ required to induce VEGF synthesis in HN33 cells and the amount of $H_2O_2$ produced by $10{\mu}M\;A{\beta}_{1-42}$ in vitro suggested that a toxic concentration of $A{\beta}$ might induce VEGF synthesis in these cells. However, toxic concentrations of $A{\beta}$ failed to induce VEGF synthesis in several cell systems. They also had no effect on antioxidant enzymes such as glutathione peroxidase, catalase, and peroxiredoxin in HN33 cells. $Cu^{2+}$, $Zn^{2+}$ and $Fe^{3+}$ are known to accumulate in the brains of AD patients and promote aggregation of $A{\beta}$, and $Cu^{2+}$ by itself induces synthesis of VEGF. However, there was no synergistic effect between $Cu^{2+}$ and $A{\beta}_{1-42}$ in the induction of VEGF synthesis and $Zn^{2+}$ and $Fe^{3+}$ also had no effect on the synthesis of VEGF, alone or in combination with $A{\beta}$.

A Refining of Natural Diatomite and Synthesis of SiC Powder (규조토 정제 및 탄화규소 분말합성)

  • Pai, Chul-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.312-319
    • /
    • 2017
  • For high value-added applications of natural blue diatomite, the physical refining process and synthesis of SiC from refined diatomite were investigated. Approximately 30 percent Fe ($Fe_2O_3$) in raw blue diatomite was removed by a particle sieve separation process; the Fe composition for 325 mesh down powder was approximately 2 percent. Although a wet and/or dry magnetic separation process had some influence on the separation and/or refining of Fe composition, the Fe composition in the non-magnetic by-product was approximately 2 percent. Water leaching separation was effective in removing the Fe composition; approximately 40 percent of the Fe in raw blue diatomite was removed. The synthesis of ${\beta}$-SiC by a carbothermal reduction of the $SiO_2$ in the refined diatomite using carbon (graphite, carbon black), the effects of an acid-treatment on removing the Fe, and the specific surface area for the synthesized powder were also investigated. The impurities were mostly eliminated and the specific surface area was increased to $52.5m^2/g$.

Properties of Beta-Ga2O3 Film from the Furnace Oxidation of Freestanding GaN (FS-GaN을 열산화하여 제작된 Beta-Ga2O3 박막의 특성)

  • Son, Hoki;Lee, YoungJin;Lee, Mijai;Kim, Jin-Ho;Jeon, Dae-Woo;Hwang, Jonghee;Lee, Hae-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.7
    • /
    • pp.427-431
    • /
    • 2017
  • In this paper, we discuss ${\beta}-Ga_2O_3$ thin films that have been grown on freestanding GaN (FS-GaN) using furnace oxidation. A GaN template was grown by horizontalhydride vapor phase epitaxy (HVPE), and FS-GaN was fabricated using the laser lift off (LLO) system. To obtain ${\beta}-Ga_2O_3$ thin film, FS-GaN was oxidized at $900{\sim}1,100^{\circ}C$. Surface and cross-section of prepared ${\beta}-Ga_2O_3$ thin films were observed by field emission scanning electron microscopy (FE-SEM). The single crystal FS-GaNs were changed to poly-crystal ${\beta}-Ga_2O_3$. The oxidized ${\beta}-Ga_2O_3$ thin film at $1,100^{\circ}C$ was peel off from FS-GaN. Next, oxidation of FS-GaNwas investigated for 0.5~12 hours with variation of the oxidation time. The thicknesses of ${\beta}-Ga_2O_3$ thin films were measured from 100 nm to 1,200 nm. Moreover, the 2-theta XRD result indicated that (-201), (-402), and (-603) peaks were confirmed. The intensity of peaks was increased with increased oxidation time. The ${\beta}-Ga_2O_3$ thin film was generated to oxidize FS-GaN.

Effects of Melt Super-heating on the Shape Modification of ${\beta}-AlFeSi$ Intermetallic compound in AC2B Aluminum Alloy (AC2B 알루미늄합금의 고온용해에 의한 금속간화합물 ${\beta}-AlFeSi$상 형상계량 효과)

  • Kim, Heon-Joo
    • Journal of Korea Foundry Society
    • /
    • v.21 no.3
    • /
    • pp.179-186
    • /
    • 2001
  • Melt super-heating which promotes shape modification of ${\beta}$ intermetallic compounds was conducted to improve mechanical properties of recycled AC2B aluminum alloy. Modification of needle-shape ${\beta}$ intermetallic compounds was effective for the specimens of AC2B aluminum alloys containing 0.85wt.% Fe by melt super-heating, in which the melts had been held at $850^{\circ}C$ or $950^{\circ}C$ for 30 minutes respectively. Owing to the modification of needle-shape of ${\beta}$ intermetallic compounds by melt superheating of the alloy with containing 0.85wt.% Fe to $950^{\circ}C$, increases in elongation and tensile strength were prominent to be more than double and 55% respectively in comparison with the melt heated to $740^{\circ}C$. Moreover, modification of needle-shape ${\beta}$ intermetallic compounds in the alloy containing O.85wt.% Fe by $950^{\circ}C$ melt super-heating led to 48% improvement of the value of impact absorbed energy as compared with the melt heated to $740^{\circ}C$.

  • PDF

Study on Physical and Chemical Properties of CaO-Al2O3 System Melting Compound (CaO-Al2O3계 용융화합물의 물리·화학적 특성에 관한 연구)

  • Lee, Keun-Jae;Koo, Ja-Sul;Kim, Jin-Man;Oh, Sang-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.2
    • /
    • pp.209-215
    • /
    • 2013
  • This study is aimed to identify the method to use the CaO-$Al_2O_3$ system of rapidly cooled steel making slag (RCSS) as the environment-friendly inorganic accelerating agent by analyzing its physical and chemical properties. The fraction of rapidly cooled steel making slag is distinguished from its fibrous, and the contents of CaO and $Fe_2O_3$ are inversely proportional across different fractions. In addition, as the content of CaO decreased and the content of $Fe_2O_3$ increased, the loss ignition tended to become negative (-) and the density increased. The pore distribution by mercury intrusion porosimetry is very low as compared to the slowly cooled steel-making slag, which indicates that the internal defect and the microspore rate are remarkably lowered by the rapid cooling. To analyze the major minerals the rapidly cooled steel-making slag, XRD, f-CaO quantification and SEM-EDAX analysis have been performed. The results shows that f-CaO does not exist, and the components are mainly consisted of $C_{12}A_7$ and reactive ${\beta}-C_2S$.

Preparation of Magnetite Nanoparticles by Two Step Reaction (2단계 반응에 의한 마그네타이트 나노입자의 제조)

  • Shin, Dae-Kyu;Riu, Doh-Hyung
    • Journal of Powder Materials
    • /
    • v.15 no.2
    • /
    • pp.148-155
    • /
    • 2008
  • Nano magnetite particles have been prepared by two step reaction consisting of urea hydrolysis and ammonia addition at certain ranges of pH. Three different concentrations of aqueous solution of ferric ($Fe^{3+}$) and ferrous ($Fe^{2+}$) chloride (0.3 M-0.6 M, and 0.9 M) were mixed with 4 M urea solution and heated to induce the urea hydrolysis. Upon reaching at a certain pre-determined pH (around 4.7), 1 M ammonia solution were poured into the heated reaction vessels. In order to understand the relationship between the concentration of the starting solution and the final size of magnetite, in-situ pH measurements and quenching experiments were simultaneous conducted. The changes in the concentration of starting solution resulted in the difference of the threshold time for pH uprise, from I hour to 3 hours, during which the akaganeite (${\beta}$-FeOOH) particles nucleated and grew. Through the quenching experiment, it was confirmed that controlling the size of ${\beta}$-FeOOH and the attaining a proper driving force for the reaction of ${\beta}$-FeOOH and $Fe^{2+}$ ion to give $Fe_3O_4$ are important process variables for the synthesis of uniform magnetite nanoparticles.