• Title/Summary/Keyword: ${\beta}$-cell function

Search Result 348, Processing Time 0.026 seconds

T Cell Immunoglobulin Mucin Domain (TIM)-3 Promoter Activity in a Human Mast Cell Line

  • Kim, Jung Sik;Shin, Dong-Chul;Woo, Min-Yeong;Kwon, Myung-Hee;Kim, Kyongmin;Park, Sun
    • IMMUNE NETWORK
    • /
    • v.12 no.5
    • /
    • pp.207-212
    • /
    • 2012
  • T cell immunoglobulin mucin domain (TIM)-3 is an immunomodulatory molecule and upregulated in T cells by several cytokines. TIM-3 also influences mast cell function but its transcriptional regulation in mast cells has not been clarified. Therefore, we examined the transcript level and the promoter activity of TIM-3 in mast cells. The TIM-3 transcript level was assessed by real-time RT-PCR and promoter activity by luciferase reporter assay. TIM-3 mRNA levels were increased in HMC-1, a human mast cell line by TGF-${\beta}1$ stimulation but not by stimulation with interferon (IFN)-${\alpha}$, IFN-${\lambda}$, TNF-${\alpha}$, or IL-10. TIM-3 promoter -349~+144 bp region relative to the transcription start site was crucial for the basal and TGF-${\beta}1$-induced TIM-3 promoter activities in HMC-1 cells. TIM-3 promoter activity was increased by over-expression of Smad2 and Smad4, downstream molecules of TGF-${\beta}1$ signaling. Our results localize TIM-3 promoter activity to the region spanning -349 to +144 bp in resting and TGF-${\beta}1$ stimulated mast cells.

Identification of Sugar-Responsive Genes and Discovery of the New Functions in Plant Cell Wall

  • Lee, Eun-Jeong
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2007.04a
    • /
    • pp.65-73
    • /
    • 2007
  • The objective of this study is to understand how regulatory mechanisms respond to sugar status for more efficient carbon utilization and source-sink regulation in plants. So, we need to identify and characterize many components of sugar-response pathways for a better understanding of sugar responses. For this end, genes responding change of sugar status were screened using Arabidpsis cDNA arrays, and confirmed thirty-six genes to be regulated by sucrose supply in detached leaves by RNA blot analysis. Eleven of them encoding proteins for amino acid metabolism and carbohydrate metabolism were repressed by sugars. The remaining genes induced by sugar supply were for protein synthesis including ribosomal proteins and elongation factors. Among them, I focused on three hydrolase genes encoding putative $\beta$-galactosidase, $\beta$-xylosidase, and $\beta$-glucosidase that were transcriptionally induced in sugar starvation. Homology search indicated that these enzymes were involved in hydrolysis of cell wall polysaccharides. In addition to my results, recent transcriptome analysis suggested multiple genes for cell wall degradation were induced by sugar starvation. Thus, I hypothesized that enzyme for cell wall degradation were synthesized and secreted to hydrolyze cell wall polysaccharides producing carbon source under sugar-starved conditions. In fact, the enzymatic activities of these three enzymes increased in culture medium of Arabidopsis suspension cells under sugar starvation. The $\beta$-galactosidase encoded by At5g56870 was identified as a secretory protein in culture medium of suspension cells by mass spectrometry analysis. This protein was specifically detected under sugar-starved condition with a specific antibody. Induction of these genes was repressed in suspension cells grown with galactose, xylose and glucose as well as with sucrose. In planta, expression of the genes and protein accumulation were detected when photosynthesis was inhibited. Glycosyl hydrolase activity against galactan also increased during sugar starvation. Further, contents of cell wall polysaccharides especially pectin and hemicellulose were markedly decreased associating with sugar starvation in detached leaves. The amount of monosaccharide in pectin and hemicellulose in detached leaves decreased in response to sugar starvation. These results supported my idea that cell wall has one of function to supply carbon source in addition to determination of cell shape and physical support of plant bodies.

  • PDF

The Effects of Chungganhaeju-tang(Qingganjiejiu-tang) on Ethanol-mediated Cytokine Expression (청간해주탕이 에탄올 매개성 cytokine 발현에 미치는 영향)

  • 김병삼;김영철;이장훈;우홍정
    • The Journal of Korean Medicine
    • /
    • v.24 no.1
    • /
    • pp.190-201
    • /
    • 2003
  • Object : This study was designed to investigate the effects of Chungganhaeju-tang (Qingganjiejiu-tang) on cytotoxicity, growth inhibition, apoptosis and expression of cytokine in damaged HepG2 cells. Method : Toxicity on HepG2 cell induced by ethanol and acetaldehyde was measured for viability, cell growth, DNA replication and generation of apoptosis and cytokine. The recovery of the cell activity by Chungganhaeju-tang was estimated for the measured parameters using PCR with different cycle numbers, DNA gel-electrophoresis, and densitometric analysis, Results : Chungganhaeju-tang improves the recovery of HepG2 cells damaged by ethanol or acetaldehyde. The suppressed DNA synthesis of the cell damaged by ethanol or acetaldehyde is improved by Chungganhaeju-tang. A liver-protection effect was shown by the reduction of apoptosis and $TNF-{\alpha},{\;}IL-1{\beta}$ expressions that are induced by ethanol or acetaldehyde. Conclusion : The result indicates that Chungganhaeju-tang reduces toxicity induced by ethanol or acetaldehyde and recovers damaged liver function.

  • PDF

Ginsenoside Rg3 reduces the risk of neuronal cell death by attenuating reactive oxygen species and neurotrophins

  • Joo, Seong-Soo;Won, Tae-Joon;Hwang, Kwang-Woo;Lee, Do-Ik
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.134.1-134.1
    • /
    • 2003
  • In regard to $A\beta$ toxicity and AD, reactive oxygen species (ROS) are produced by macrophage families in response to $A\beta$ stimulation. In addition to this, neurotrophins (NTs) regulate the neuronal function as well as cell survival and the growth of various types of neurons in both the peripheral nervous system (PNS) and central nervous system (CNS). As high expressions of the ROS and NTs are a routine findings in neuronal cell damage, we wanted to investigate whether Rg3 can inhibit the production of ROS and NTs primary cell cultures. (omitted)

  • PDF

Analysis of Thymosin β4 and Vascular Endothelial Cell Growth Factor (VEGF) Expression in Normal Human Tissues Using Tissue Microarray (Tissue microarray를 이용한 사이모신 베타4(Thymosin β4)와 vascular endothelial cell growth factor (VEGF)의 정상 인간 조직 발현 양상 연구)

  • Ock, Mee-Sun;Cha, Hee-Jae
    • Journal of Life Science
    • /
    • v.19 no.12
    • /
    • pp.1777-1786
    • /
    • 2009
  • Thymosin ${\beta}4$, a small protein containing 43 amino acids, has multi-functional roles in cell physiology. It was first identified as a thymic maturation factor and recently has been shown to accelerate wound healing, hair growth, angiogenesis, tumor growth, and metastasis. It was also reported to play a key role in developing organs, including the nervous system and heart. Thymosin ${\beta}4$ induces the expression of vascular endothelial cell growth factor (VEGF), laminin-5, and other important biologically active genes. Using tissue microarray analysis, we investigated the expression patterns of thymosin ${\beta}4$ and VEGF in various normal human adult tissues. Thymosin ${\beta}4$ was highly expressed in the liver, pancreas, ductal epithelium of the salivary gland, and heart, and moderately expressed in the skin, lung, spleen, lymph node, thymus, ureter, and blood endothelial cells in both the lung and adrenal gland. The expression of VEGF generally co-localized with thymosin ${\beta}4$ and VEGF was highly expressed in the pancreas, ureter, mammary gland, liver, esophagus, and blood endothelial cells in both the lung and adrenal gland. These results suggest that thymosin ${\beta}4$ plays an important role in the function of various organs and since the expression pattern of thymosin ${\beta}4$ co-localized with VEGF, part of that function may be to induce or maintain angiogenesis.

Effect of Jaeumyangyung-tang on the Hyperglycemic Mice Induced with Streptozotocin (자음양영탕이 Streptozotocin(STZ)로 유발된 생쥐의 고혈당에 미치는 영향(影響))

  • Lee, Hyung-Ho;Lee, Young-Soo
    • The Journal of Internal Korean Medicine
    • /
    • v.28 no.3
    • /
    • pp.510-518
    • /
    • 2007
  • Objectives : The aim of this study was to investigate the effect of Jaeumyangyung-tang(滋陰養榮場(JY), JA-0.65g/kg;JB-1.3g/kg) on hyperglycemic mice induced with streptozotocin(STZ). Methods : The experiment operated for 6 weeks. The rats were divided into 3 groups : diabetic group(control group), diabetic group treated with JA(0.65g/kg) for 6 weeks, and diabetic group treated with Jb(1.3g/kg) for 6 weeks. Results : In the STZ-induced diabetic group, blood glucose levels significantly increased as well as the loss of body weight. The levels of serum glucose decreased significantly (p<0.05 or p<0.01) in the JA and JB groups compared with the control. According to a tolerance test, intraperitoneal glucose was ameliorated in the JA and JB groups. The blood urea nitrogen (BUN) and creatinine levels slightly decreased. Histologic analyses of the pancreases revealed that the ${\beta}-cells$ on Langerhans' islets were destroyed by STZ, but the ${\beta}-cell$ mass was larger in the JY than in the control mice. Conclusions : These results indicate that JY can exert beneficial effects on diabetes. preservation of in vivo ${\beta}-cell$ function and regeneration of ${\beta}-cell$ dysfunction by STZ.

  • PDF

CD133 Regulates IL-1β Signaling and Neutrophil Recruitment in Glioblastoma

  • Lee, Seon Yong;Kim, Jun-Kyum;Jeon, Hee-Young;Ham, Seok Won;Kim, Hyunggee
    • Molecules and Cells
    • /
    • v.40 no.7
    • /
    • pp.515-522
    • /
    • 2017
  • CD133, a pentaspan transmembrane glycoprotein, is generally used as a cancer stem cell marker in various human malignancies, but its biological function in cancer cells, especially in glioma cells, is largely unknown. Here, we demonstrated that forced expression of CD133 increases the expression of IL-$1{\beta}$ and its downstream chemokines, namely, CCL3, CXCL3 and CXCL5, in U87MG glioma cells. Although there were no apparent changes in cell growth and sphere formation in vitro and tumor growth in vivo, in vitro trans-well studies and in vivo tumor xenograft assays showed that neutrophil recruitment was markedly increased by the ectopic expression of CD133. In addition, the clinical relevance between CD133 expression and IL-$1{\beta}$ gene signature was established in patients with malignant gliomas. Thus, these results imply that glioma cells expressing CD133 are capable of modulating tumor microenvironment through the IL-$1{\beta}$ signaling pathway.

Effects of Codonopsis lanceolata Extracts on Mouse Immune Cell Activation (더덕 추출물이 마우스 면역세포 증식에 미치는 영향)

  • Ryu, Hye-Sook
    • The Korean Journal of Food And Nutrition
    • /
    • v.21 no.3
    • /
    • pp.263-268
    • /
    • 2008
  • Codonopsis lanceolata has long been used as a seasonal food and as a traditional tonic medicine with anti-inflammatory and anti-oxidation properties. The present study investigated the in vitro effect of Codonopsis lanceolata extracts on immune function in mice. After preparing a single cell suspension splenocyte proliferation was determined by the MTT(3-[4,5-dimethylthiazol-2-y]-2,5-diphenyl terazolium bromide) assay. The cytokines IL-1${\beta}$, IL-6, and TNF-$\alpha$ were not secreted by macrophages stimulated with or without LPS as determined by an ELISA cytokine kit assay. After a 48-hr incubation with the mitogens ConA or LPS there was an increase in splenocytes proliferation and in the production of IL-1${\beta}$, IL-6, and TNF-$\alpha$ in the suspensions supplemented with 50, 100, 250, 500 ${\mu}g/m{\ell}$ Codonopsis lanceolata water extract. The results suggest Codonopsis lanceolata water extract may enhance immune function by regulating splenocyte proliferation and stimulating cytokine production.

The Effects of Injinchunggantang on Interferon Signaling Pathway of HepG2 Cells (인진청간탕(茵蔯淸肝湯)이 HepG2 cell의 인터페론 신호전달계에 미치는 영향)

  • Yi, Jong-Hoon;Kim, Young-Chul;Lee, Jang-Hoon;Woo, Hong-Jung
    • The Journal of Internal Korean Medicine
    • /
    • v.26 no.1
    • /
    • pp.74-92
    • /
    • 2005
  • Objectives/Methods : To analyze the effect of Injinchunggantang(IJCGT) to Interferon-${\alpha}/{\beta}$ signal transmission system in HepG2 cells, HepG2 Cell were treated with IJCGT. Also, revelation of MxA, 2'5'-OAS mRNA leaded by Interferon-${\alpha}/{\beta}$ and revelation and activation of Jak1, TYK1, and STAT 1, all main signal transmission factors, were analyzed. Results : The analysis resulted in the following 1. With interferon ${\alpha}/{\beta}$ there was no affect cell propagation of Hep G2 cells. With IJCGT alone, cell propagation of HepG2 was promoted, and cell propagation control function was recovered. 2. With interferon ${\alpha}/{\beta}$ cell death was unaffected. With IJCGT apoptosis of HepG2 cell was restrained, and the cell's reaction to interferon was unaffected. 3. With interferon ${\alpha}/{\beta}$ treatment mRNA revelation of MxA and 2'5'-OAS was induced. When HepG2 cells were injected with IJCGT without interferon ${\alpha}/{\beta}$ treatment, mRNA revelation of MxA and 2'5'-OAS increased in proportion to the treatment density. With pre-treatment of IJCGT, leaded with interferon ${\alpha}/{\beta}$, promoted revelation of MxA, 2'5' -OAS mRNA. 4. Though mRNA revelation of lakl, TYK1 and STAT1 was unaffected with IJCGT, activation of STAT1 was promoted with an increase of phosphorylation of STAT1 protein. With pre-treatment of IJCGT, Jak1, TYK2, STAT1 phosphorylation, leaded with interferon, strengthened. 5. TNF-a, IL-1b and LPS present, revelation of MxA and 2'5'-OAS mRNA leaded by interferon was restrained when HepG2 cells were treated with IJCGT, and the interferon signal transmission system restraint action leaded by inflammatory cytokines was moderated. Conclusion : These results support a role for IJGCT in promotion of anti-virus action through maintainance of the liver's sensibility toward interferon. A clinical study of an interferon treated patient treated also with IJGCT is needed to determine its efficacy.

  • PDF

Nuclear Receptor PPARα Agonist Wy-14,643 Ameliorates Hepatic Cell Death in Hepatic IKKβ-Deficient Mice

  • Kim, Taehyeong;Wahyudi, Lilik Duwi;Gonzalez, Frank J.;Kim, Jung-Hwan
    • Biomolecules & Therapeutics
    • /
    • v.25 no.5
    • /
    • pp.504-510
    • /
    • 2017
  • Inhibitor of nuclear factor kappa-B kinase beta ($IKK{\beta}$) plays a critical role in cell proliferation and inflammation in various cells by activating $NF-{\kappa}B$ signaling. However, the interrelationship between peroxisome proliferator-activated receptor ${\alpha}$ ($PPAR{\alpha}$) and $IKK{\beta}$ in cell proliferation is not clear. In this study, we investigated the possible role of $PPAR{\alpha}$ in the hepatic cell death in the absence of $IKK{\beta}$ gene using liver-specific Ikkb-null ($Ikkb^{F/F-AlbCre}$) mice. To examine the function of $PPAR{\alpha}$ activation in hepatic cell death, wild-type ($Ikkb^{F/F}$) and $Ikkb^{F/F-AlbCre}$ mice were treated with $PPAR{\alpha}$ agonist Wy-14,643 (0.1% w/w chow diet) for two weeks. As a result of Wy-14,643 treatment, apoptotic markers including caspase-3 cleavage, poly (ADP-ribose) polymerase (PARP) cleavage and TUNEL-positive staining were significantly decreased in the $Ikkb^{F/F-AlbCre}$ mice. Surprisingly, Wy-14,643 increased the phosphorylation of p65 and STAT3 in both Ikkb and $Ikkb^{F/F-AlbCre}$ mice. Furthermore, BrdU-positive cells were significantly increased in both groups after treatment with Wy-14,643. Our results suggested that $IKK{\beta}-derived$ hepatic apoptosis could be altered by $PPAR{\alpha}$ activation in conjunction with activation of $NF-{\kappa}B$ and STAT3 signaling.