• Title/Summary/Keyword: ${\beta}$-algebra

Search Result 28, Processing Time 0.022 seconds

β-ALGEBRAS AND RELATED TOPICS

  • Kim, Young-Hee;So, Keum-Sook
    • Communications of the Korean Mathematical Society
    • /
    • v.27 no.2
    • /
    • pp.217-222
    • /
    • 2012
  • In this note we investigate some properties of ${\beta}$-algebras and further relations with $B$-algebras. Especially, we show that if ($X$, -, +, 0) is a $B^*$-algebra, then ($X$, +) is a semigroup with identity 0. We discuss some constructions of linear ${\beta}$-algebras in a field $K$.

CONTINUITY OF (α,β)-DERIVATIO OF OPERATOR ALGEBRAS

  • Hou, Chengjun;Meng, Qing
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.4
    • /
    • pp.823-835
    • /
    • 2011
  • We investigate the continuity of (${\alpha},{\beta}$)-derivations on B(X) or $C^*$-algebras. We give some sufficient conditions on which (${\alpha},{\beta}$)-derivations on B(X) are continuous and show that each (${\alpha},{\beta}$)-derivation from a unital $C^*$-algebra into its a Banach module is continuous when and ${\alpha}$ ${\beta}$ are continuous at zero. As an application, we also study the ultraweak continuity of (${\alpha},{\beta}$)-derivations on von Neumann algebras.

GROUP ACTIONS ON KAC ALGEBRAS

  • Lee, Jung Rye
    • Korean Journal of Mathematics
    • /
    • v.7 no.1
    • /
    • pp.103-110
    • /
    • 1999
  • For a group action ${\alpha}$ on a Kac algebra $\mathbb{K}$ with the crossed product Kac algebra $\mathbb{K}{\rtimes}_{\alpha}G$, we will show that ${\pi}_{\alpha}(\mathbb{K})$ is a sub-Kac algebra of $\mathbb{K}{\rtimes}_{\alpha}G$. We will also investigate the intrinsic group $G(\mathbb{K})$ of $\mathbb{K}$ and get a group action ${\beta}$ on a symmetric Kac algebra $\mathbb{K}_s(G(\mathbb{K})$ with the crossed product sub-Kac algebra $\mathbb{K}_s(G(\mathbb{K}){\rtimes}_{\beta}G$ of $\mathbb{K}{\rtimes}_{\alpha}G$.

  • PDF

Iterated Loop Space의 $a_p$-module Structure

  • Kim Sang Man
    • The Mathematical Education
    • /
    • v.22 no.2
    • /
    • pp.5-12
    • /
    • 1984
  • Steenrod algebra $\alpha$$_{p}$(mod p) was generated for algebra on steenrod reduced powers p$^n$ and Bochstein coboudary operation $\beta$. We know the relation between them. In this thesis I have verified the theorem: (equation omitted)

  • PDF

NON-EXISTENCE OF SOME ARTINIAN LEVEL O-SEQUENCES OF CODIMENSION 3

  • Shin, Dong-Soo
    • Journal of applied mathematics & informatics
    • /
    • v.23 no.1_2
    • /
    • pp.517-523
    • /
    • 2007
  • Let R/I be an Artinian algebra of codimension 3 with Hilbert function H such that $h_{d-1}>h_d=h_{d+1}$. Ahn and Shin showed that A cannot be level if ${\beta}_{1,d+2}(Gin(I))={\beta}_{2,d+2}(Gin(I))$ where Gin(I) is a generic initial ideal of I. We prove that some certain graded Artinian algebra R/I cannot be level if either ${\beta}_{1,d}(I^{lex})={\beta}_{2,d}(I^{lex})+1\;or\;{\beta}_{1,d+1}(I^{lex})={\beta}_{2,d+1}(I^{lex})\;where\;I^{lex}$ is a lex-segment ideal associated to I.

SOME UMBRAL CHARACTERISTICS OF THE ACTUARIAL POLYNOMIALS

  • Kim, Eun Woo;Jang, Yu Seon
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.29 no.1
    • /
    • pp.73-82
    • /
    • 2016
  • The utility of exponential generating functions is that they are relevant for combinatorial problems involving sets and subsets. Sequences of polynomials play a fundamental role in applied mathematics, such sequences can be described using the exponential generating functions. The actuarial polynomials ${\alpha}^{({\beta})}_n(x)$, n = 0, 1, 2, ${\cdots}$, which was suggested by Toscano, have the following exponential generating function: $${\limits\sum^{\infty}_{n=0}}{\frac{{\alpha}^{({\beta})}_n(x)}{n!}}t^n={\exp}({\beta}t+x(1-e^t))$$. A linear functional on polynomial space can be identified with a formal power series. The set of formal power series is usually given the structure of an algebra under formal addition and multiplication. This algebra structure, the additive part of which agree with the vector space structure on the space of linear functionals, which is transferred from the space of the linear functionals. The algebra so obtained is called the umbral algebra, and the umbral calculus is the study of this algebra. In this paper, we investigate some umbral representations in the actuarial polynomials.

STABILITY OF (α, β, γ)-DERIVATIONS ON LIE C*-ALGEBRA ASSOCIATED TO A PEXIDERIZED QUADRATIC TYPE FUNCTIONAL EQUATION

  • Eghbali, Nasrin;Hazrati, Somayeh
    • Communications of the Korean Mathematical Society
    • /
    • v.31 no.1
    • /
    • pp.101-113
    • /
    • 2016
  • In this article, we considered the stability of the following (${\alpha}$, ${\beta}$, ${\gamma}$)-derivation $${\alpha}D[x,y]={\beta}[D(x),y]+{\gamma}[x,D(y)]$$ and homomorphisms associated to the quadratic type functional equation $$f(kx+y)+f(kx+{\sigma}(y))=2kg(x)+2g(y),\;x,y{\in}A$$, where ${\sigma}$ is an involution of the Lie $C^*$-algebra A and k is a fixed positive integer. The Hyers-Ulam stability on unbounded domains is also studied. Applications of the results for the asymptotic behavior of the generalized quadratic functional equation are provided.

GALOIS CORRESPONDENCES FOR SUBFACTORS RELATED TO NORMAL SUBGROUPS

  • Lee, Jung-Rye
    • Communications of the Korean Mathematical Society
    • /
    • v.17 no.2
    • /
    • pp.253-260
    • /
    • 2002
  • For an outer action $\alpha$ of a finite group G on a factor M, it was proved that H is a, normal subgroup of G if and only if there exists a finite group F and an outer action $\beta$ of F on the crossed product algebra M $\times$$_{\alpha}$ G = (M $\times$$_{\alpha}$ F. We generalize this to infinite group actions. For an outer action $\alpha$ of a discrete group, we obtain a Galois correspondence for crossed product algebras related to normal subgroups. When $\alpha$ satisfies a certain condition, we also obtain a Galois correspondence for fixed point algebras. Furthermore, for a minimal action $\alpha$ of a compact group G and a closed normal subgroup H, we prove $M^{G}$ = ( $M^{H}$)$^{{beta}(G/H)}$for a minimal action $\beta$ of G/H on $M^{H}$.f G/H on $M^{H}$.TEX> H/.

A BANACH ALGEBRA AND ITS EQUIVALENT SPACES OVER PATHS WITH A POSITIVE MEASURE

  • Cho, Dong Hyun
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.3
    • /
    • pp.809-823
    • /
    • 2020
  • Let C[0, T] denote the space of continuous, real-valued functions on the interval [0, T] and let C0[0, T] be the space of functions x in C[0, T] with x(0) = 0. In this paper, we introduce a Banach algebra ${\bar{\mathcal{S}}}_{{\alpha},{\beta};{\varphi}}$ on C[0, T] and its equivalent space ${\bar{\mathcal{F}}}({\mathcal{H}}) $, a space of transforms of equivalence classes of measures, which generalizes Fresnel class 𝓕(𝓗), where 𝓗 is an appropriate real separable Hilbert space of functions on [0, T]. We also investigate their properties and derive an isomorphism between ${\bar{\mathcal{S}}}_{{\alpha},{\beta};{\varphi}}$ and ${\bar{\mathcal{F}}}({\mathcal{H}}) $. When C[0, T] is replaced by C0[0, T], ${\bar{\mathcal{F}}}({\mathcal{H}}) $ and ${\bar{\mathcal{S}}}_{{\alpha},{\beta};{\varphi}}$ reduce to 𝓕(𝓗) and Cameron-Storvick's Banach algebra 𝓢, respectively, which is the space of generalized Fourier-Stieltjes transforms of the complex-valued, finite Borel measures on L2[0, T].

n-WEAK AMENABILITY AND STRONG DOUBLE LIMIT PROPERTY

  • MEDGHALCHI, A.R.;YAZDANPANAH, T.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.42 no.2
    • /
    • pp.359-367
    • /
    • 2005
  • Let A be a Banach algebra, we say that A has the strongly double limit property (SDLP) if for each bounded net $(a_\alpha)$ in A and each bounded net $(a^{\ast}\;_\beta)\;in\;A^{\ast},\;lim_\alpha\;lim_\beta=lim_\beta\;lim_\alpha$ whenever both iterated limits exist. In this paper among other results we show that if A has the SDLP and $A^{\ast\ast}$ is (n - 2)-weakly amenable, then A is n-weakly amenable. In particular, it is shown that if $A^{\ast\ast}$ is weakly amenable and A has the SDLP, then A is weakly amenable.