• Title/Summary/Keyword: ${\beta}$-agonists

Search Result 102, Processing Time 0.024 seconds

Synthesis of Tetrahydrocarbazole Derivatives as Potent β3-Adrenoceptor Agonists

  • Ha, Jae-Du;Kang, Seung-Kyu;Cheon, Hyae-Gyeong;Choi, Joong-Kwon
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.12
    • /
    • pp.1784-1790
    • /
    • 2004
  • A series of 2-(3-chlorophenyl)-2-hydroxyethylamine derivatives containing a tetrahydrocarbazole linker were prepared and evaluated for their ${\beta}_3$-adrenoceptor agonistic activity. Several compounds showed potency comparable to CL-316243.

Dopamine $\beta$-Hydroxylase Inhibitory Activity of Chinese Herbal Drugs

  • Sun, Ji-Yeon;Lee, Jee-Hwan;Ki, Chan-Young;Han, Yong-Nam
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.272.2-272.2
    • /
    • 2003
  • Dopamine ${\beta}$-hydroxylase (DBH) synthesizes norepinephrine from dopamine under the presence of ascorbate as a coenzyme. Dopamine is transported into the vesicles of the varicosity, where the synthesis and the storage of norepinephrine take place. Some drugs such as DBH inhibitors, dopaminergic agonists,etc. are known to assist in treating Parkinson's disease. (omitted)

  • PDF

Parthenolide Suppresses the Expression of Cyclooxygenase-2 and Inducible Nitric Oxide Synthase Induced by Toll-Like Receptor 2 and 4 Agonists

  • Lee, A-Neum;Park, Se-Jeong;Yun, Sae-Mi;Lee, Mi-Young;Son, Bu-Soon;Youn, Hyung-Sun
    • Biomedical Science Letters
    • /
    • v.16 no.1
    • /
    • pp.39-45
    • /
    • 2010
  • Toll-like receptors (TLRs), which are pattern recognition receptors (PRRs), recognize pathogen-associated molecular patterns (PAMPs) and regulate the activation of innate immunity. All TLR signaling pathways culminate in the activation of NF-${\kappa}B$, leading to the induction of inflammatory gene products such as cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS). Parthenolide, a sesquiterpene lactone isolated from the herb feverfew (Tanacetum parthenium), has been used as folk remedies to treat many chronic diseases for many years. In the present report, we present biochemical evidence that parthenolide inhibits the NF-${\kappa}B$ activation induced by TLR agonists and the overexpression of downstream signaling components of TLRs, MyD88, $IKK{\beta}$, and p65. Parthenolide also inhibits TLR agonists-induced COX-2 and iNOS expression. These results suggest that parthenolide can modulate the immune responses regulated by TLR signaling pathways.

Add-on Therapy for Symptomatic Asthma despite Long-Acting Beta-Agonists/Inhaled Corticosteroid

  • Dreher, Michael;Muller, Tobias
    • Tuberculosis and Respiratory Diseases
    • /
    • v.81 no.1
    • /
    • pp.1-5
    • /
    • 2018
  • Asthma, remains symptomatic despite ongoing treatment with high doses of inhaled corticosteroids (ICS) in conjunction with long-acting beta-agonists (LABA), is classified as "severe" asthma. In the course of caring for those patients diagnosed with severe asthma, stepping up from ICS/LABA to more aggressive therapeutic measures would be justified, though several aspects have to be checked in advance (including inhaler technique, adherence to therapy, and possible associated comorbidities). That accomplished, it would be advisable to step up care in accordance with the Global Initiative for Asthma (GINA) recommendations. Possible strategies include the addition of a leukotriene receptor antagonist or tiotropium (to the treatment regimen). The latter has been shown to be effective in the management of several subgroups of asthma. Oral corticosteroids have commonly been used for the treatment of patients with severe asthma in the past; however, the use of oral corticosteroids is commonly associated with corticosteroid-related adverse events and comorbidities. Therefore, according to GINA 2017 these patients should be referred to experts who specialize in the treatment of severe asthma to check further therapeutic options including biologics before starting treatment with oral corticosteroids.

Design and Synthesis of Oxime Ethers of β-Oxo-γ-phenylbutanoic Acids as PPAR α and -γ Dual Agonists

  • Han, Hee-Oon;Koh, Jong-Sung;Kim, Seung-Hae;Park, Ok-Ku;Kim, Kyoung-Hee;Jeon, Sang-Kweon;Hur, Gwong-Cheung;Yim, Hyeon-Joo;Kim, Geun-Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.6
    • /
    • pp.1979-1982
    • /
    • 2012
  • Oxime ethers of ${\beta}$-oxo-${\gamma}$-phenylbutanoic acids were prepared to develop more effective PPAR ${\alpha}$ and ${\gamma}$ dual agonists. Among them, compound 11k exhibited potent $in$ $vitro$ activities with $EC_{50}$ of 2.5 nM and 3.3 nM in PPAR ${\alpha}$ and ${\gamma}$, respectively. It showed better glucose lowering effects than rosiglitazone 1 and improved the lipid profile like plasma triglyceride in db/db mice model.

Guggulsterone Suppresses the Activation of NF-${\kappa}B$ and Expression of COX-2 Induced by Toll-like Receptor 2, 3, and 4 Agonists

  • Ahn, Sang-Il;Youn, Hyung-Sun
    • Food Science and Biotechnology
    • /
    • v.17 no.6
    • /
    • pp.1294-1298
    • /
    • 2008
  • Toll-like receptors (TLRs) induce innate immune responses recognizing conserved microbial structural molecules. All TLR signaling pathways culminate in the activation of nuclear factor-${\kappa}B$ (NF-${\kappa}B$). The activation of NF-${\kappa}B$ leads to the induction of inflammatory gene products such as cyclooxygenase-2 (COX-2). Guggul has been used for centuries to treat a variety of diseases. Guggulstreone, one of the active ingredients in guggul, has been used to treat many chronic diseases. However, the mechanism as to how guggulsterone mediate the health effects is largely unknown. Here, we report biochemical evidence that guggulsterone inhibits the NF-${\kappa}B$ activation and COX-2 expression induced by TLR2, TLR3, and TLR4 agonists. Guggulsterone also inhibits the NF-${\kappa}B$ activation induced by downstream signaling components of TLRs, myeloid differential factor 88 (MyD88), $I{\kappa}B$ kinase ${\beta}$ ($IKK{\beta}$), and p65. These results imply that guggulsterone can modulate the immune responses regulated by TLR signaling pathways.

Involvement of Adenosine in Cardioprotective Effect of Catecholamine Preconditioning in Ischemia-Reperfused Heart of Rat

  • Kim, Young-Hoon;Kim, Chan-Hyung;Kim, Gi-Tae;Kim, In-Kyu;Park, Jong-Wan;Kim, Myung-Suk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.6
    • /
    • pp.753-761
    • /
    • 1998
  • Preconditioning of a heart with small doses of catecholamines induces a tolerance against the subsequent lethal ischemia. The present study was performed to find a specific receptor pathway involved with the catecholamine preconditioning and to test if adenosine plays a role in this cardioprotective effect. Isolated rat hearts, pretreated with small doses of ${\alpha}-\;or\;{\beta}-adrenergic$ agonists/antagonists, were subjected to 20 minutes ischemia and 20 minutes reperfusion by Langendorff perfusion method. Cardiac mechanical functions, lactate dehydrogenase and adenosine release from the hearts were measured before and after the drug treatments and ischemia. In another series of experiments, adenosine $A_1\;or\;A_2$ receptor blockers were treated prior to administration of adrenergic agonists. Pretreatments of a ${\beta}-agonist,\;isoproterenol(10^{-9}{\sim}10^{-7}\;M)$ markedly improved the post-ischemic mechanical function and reduced the lactate dehydrogenase release. Similar cardioprotective effect was observed with an ?-agonist, phenylephrine pretreatment, but much higher $concentration(10^{-4}\;M)$ was needed to achieve the same degree of cardioprotection. The cardioprotective effects of isoproterenol and phenylephrine pretreatments were blocked by a ${\beta}_1-adrenergic$ receptor antagonist, atenolol, but not by an ${\alpha}_1-antagonist,$ prazosin. Adenosine release from the heart was increased by isoproterenol, and the increase was also blocked by atenolol, but not by prazosin. A selective $A_1-adenosine$ receptor antagonist, 1,3-dipropyl-8-cyclopentyl xanthine (DPCPX) blocked the cardioprotection by isoproterenol pretreatment. These results suggest that catecholamine pretreatment protects rat myocardium against ischemia and reperfusion injury by mediation of ${\beta}_1-adrenergic$ receptor pathway, and that adenosine is involved in this cardioprotective effect.

  • PDF

Effect of Formoterol on the Plasma Levels of Theophylline after the Oral Administration to the Children with Respiratory Diseases (소아 호출기 환자에서 경구 투여된 Formoterol이 Theophylline의 혈중농도에 미치는 영향의 연구)

  • Jang, Jin Kyung;Jung, Nak Gyun;Lee, Sook Hyang;Cho, Hea Kyoung
    • Korean Journal of Clinical Pharmacy
    • /
    • v.10 no.3
    • /
    • pp.107-110
    • /
    • 2000
  • Theophylline and $\beta$-adrenergic agonists are frequently used together in patients with respiratory diseases. However the clinical impact of $\beta_2$-adrenergic agonists on the blood concentration of theophylline is not fully evaluated. Formoterol, a newly available oral ${\beta}_2$-adrenergic agonist is frequently used in pediatric respiratory patients. The objective of this study was to investigate the effect of oral formoterol on theophylline's blood concentration. Randomized prospective study was conducted. Twenty-four children were enrolled on the study. Their age ranged 2 to 73 months (mean 35.8 months). Theophylline group (12 patients) received 10 mg/kg/day of for theophylline orally. Theophylline/formoterol group (12 patients) received 10 mg/kg/day of theophylline and $4\;{\mu}g/kg/day$ of formoterol orally. All medications were administered at least for 5 days starting on admission day. Theophylline's trough concentrations were obtained on days 3 and day 5. Pulse rates were recorded before the study medications were given on admission, and days 3 and day 5. Statistical significance was calculated by two-tailed Student's t-test. Theophylline's levels in children given theophylline and formoterol together were lower an those given theophylline alone ($6.38\pm0.90\;{\mu}g/ml\;vs\;7.43\pm0.77\;{\mu}g/ml$ on day 3(p<0.05), $5.62\pm0.56\;{\mu}g/ml\;vs.\;6.78\pm0.61\;{\mu}g/ml$ on day 5 (p<0.05)). In both groups, theophylline's trough concentration on day 5 were lower than day 3. There was no significant side effects in both groups. In conclusion, the new ${\beta}_2$ selective adrenergic agonist formoterol reduced serum theophylline levels in children with respiratory diseases. Further investigation is needed to clarify the long term effect of this drug interaction.

  • PDF