• Title/Summary/Keyword: ${\alpha}-smooth$ muscle actin

Search Result 83, Processing Time 0.017 seconds

The Effect of Dangguijakyak-san on Wound Healing (당귀작약산의 창상 회복에 대한 효과)

  • Yun-Jin Lee;Chang-Hoon Woo;Young-Jun Kim;Hyeon-Ji Kim;Hee-Duk An
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.33 no.3
    • /
    • pp.47-65
    • /
    • 2023
  • Objectives We evaluated the wound healing effects of Dangguijakyak-san (DJ) using C57BL/6 mice that were generated open wound. Methods The study was conducted with seven C57BL/6 mice assigned to each group, divided into the normal group, control group, vitamin E group, DJ low-dose group, DJ high-dose group. We measured total polyphenol, flavonoid contents, the size of the wound, liver function, pro-inflammatory cytokine activity in serum, inflammation-related proteins, adhesion molecules and chemokine proteins, collagen-related proteins in skin tissue and histopathological changes by H&E and Masson's staining. Results DJ treatment significantly reduced the area of the wound compared to the control group. Also, inflammatory cytokines were reduced and the expression of anti-inflammatory-related factors (interleukin-4 [IL-4] and IL-10) was significantly increased in the DJ treatment group. We identified that DJ treatment inhibits both pathways of inflammation, the mitogen-activated protein kinases and nuclear factor-κB pathway. Moreover, the protein expressions of Sirt1 (sirtuin 1), MCP-1 (monocyte chemoattractant protein 1), ICAM-1 (intercellular adhesion molecule 1), and VCAM-1 (vascular cell adhesion molecule 1) were decreased by DJ administration. Also, the expression of α-smooth muscle actin and collagen type I alpha 1, collagen-related proteins, that help skin recovery was significantly increased in the DJ treatment group. Histopathologically, a relatively thin epithelial layer could be observed in the DJ administration group, as well as an increase in fibroblasts and collagen fibers. Conclusions These data suggest that DJ treatment is effective in wound healing, suppressing inflammatory proteins, increasing skin repair factors and improving histopathological changes caused by wounds.

Role of Chemical Exchange Saturation Transfer and Magnetization Transfer MRI in Detecting Metabolic and Structural Changes of Renal Fibrosis in an Animal Model at 3T

  • Anqin Li;Chuou Xu;Ping Liang;Yao Hu;Yaqi Shen;Daoyu Hu;Zhen Li;Ihab R. Kamel
    • Korean Journal of Radiology
    • /
    • v.21 no.5
    • /
    • pp.588-597
    • /
    • 2020
  • Objective: To investigate the value of combined chemical exchange saturation transfer (CEST) and conventional magnetization transfer imaging (MT) in detecting metabolic and structural changes of renal fibrosis in rats with unilateral ureteral obstruction (UUO) at 3T MRI. Materials and Methods: Thirty-five Sprague-Dawley rats underwent UUO surgery (n = 25) or sham surgery (n = 10). The obstructed and contralateral kidneys were evaluated on days 1, 3, 5, and 7 after surgery. After CEST and MT examinations, 18F-labeled fluoro-2-deoxyglucose positron emission tomography was performed to quantify glucose metabolism. Fibrosis was measured by histology and western blots. Correlations were compared between asymmetrical magnetization transfer ratio at 1.2 ppm (MTRasym(1.2ppm)) derived from CEST and maximum standard uptake value (SUVmax) and between magnetization transfer ratio (MTR) derived from MT and alpha-smooth muscle actin (α-SMA). Results: On days 3 and 7, MTRasym(1.2ppm) and MTR of UUO renal cortex and medulla were significantly different from those of contralateral kidneys (p < 0.05). On day 7, MTRasym(1.2ppm) and MTR of UUO renal cortex and medulla were significantly different from those of sham-operated kidneys (p < 0.05). The MTRasym(1.2ppm) of UUO renal medulla was fairly negatively correlated with SUVmax (r = -0.350, p = 0.021), whereas MTR of UUO renal medulla was strongly negatively correlated with α-SMA (r = -0.744, p < 0.001). Conclusion: CEST and MT could provide metabolic and structural information for comprehensive assessment of renal fibrosis in UUO rats in 3T MRI and may aid in clinical monitoring of renal fibrosis in patients with chronic kidney disease.

Apolipoprotein A1 Inhibits TGF-β1-Induced Epithelial-to-Mesenchymal Transition of Alveolar Epithelial Cells

  • Baek, Ae Rin;Lee, Ji Min;Seo, Hyun Jung;Park, Jong Sook;Lee, June Hyuk;Park, Sung Woo;Jang, An Soo;Kim, Do Jin;Koh, Eun Suk;Uh, Soo Taek;Kim, Yong Hoon;Park, Choon Sik
    • Tuberculosis and Respiratory Diseases
    • /
    • v.79 no.3
    • /
    • pp.143-152
    • /
    • 2016
  • Background: Idiopathic pulmonary fibrosis (IPF) is a progressive and lethal lung disease characterized by the accumulation of excessive fibroblasts and myofibroblasts in the extracellular matrix. The transforming growth factor ${\beta}1$ (TGF-${\beta}1$)-induced epithelial-to-mesenchymal transition (EMT) is thought to be a possible source of fibroblasts/myofibroblasts in IPF lungs. We have previously reported that apolipoprotein A1 (ApoA1) has anti-fibrotic activity in experimental lung fibrosis. In this study, we determine whether ApoA1 modulates TGF-${\beta}1$-induced EMT in experimental lung fibrosis and clarify its mechanism of action. Methods: The A549 alveolar epithelial cell line was treated with TGF-${\beta}1$ with or without ApoA1. Morphological changes and expression of EMT-related markers, including E-cadherin, N-cadherin, and ${\alpha}$-smooth muscle actin were evaluated. Expressions of Smad and non-Smad mediators and TGF-${\beta}1$ receptor type 1 ($T{\beta}RI$) and type 2 ($T{\beta}RII$) were measured. The silica-induced lung fibrosis model was established using ApoA1 overexpressing transgenic mice. Results: TGF-${\beta}1$-treated A549 cells were changed to the mesenchymal morphology with less E-cadherin and more N-cadherin expression. The addition of ApoA1 inhibited the TGF-${\beta}1$-induced change of the EMT phenotype. ApoA1 inhibited the TGF-${\beta}1$-induced increase in the phosphorylation of Smad2 and 3 as well as that of ERK and p38 mitogen-activated protein kinase mediators. In addition, ApoA1 reduced the TGF-${\beta}1$-induced increase in $T{\beta}RI$ and $T{\beta}RII$ expression. In a mouse model of silica-induced lung fibrosis, ApoA1 overexpression reduced the silica-mediated effects, which were increased N-cadherin and decreased E-cadherin expression in the alveolar epithelium. Conclusion: Our data demonstrate that ApoA1 inhibits TGF-${\beta}1$-induced EMT in experimental lung fibrosis.