• Title/Summary/Keyword: ${\alpha}-Alumina$

Search Result 184, Processing Time 0.028 seconds

Study on Recycling Technology of Waste Artificial Marble using Starch (전분을 이용한 폐인조대리석의 재활용 기술에 관한 연구)

  • Ryoo, Keon Sang
    • Journal of the Korean Chemical Society
    • /
    • v.62 no.6
    • /
    • pp.433-440
    • /
    • 2018
  • The pyrolysis has been universally applied to recycle the waste artificial marble. However, the existing heat treatment equipment has relatively low heat transfer efficiency into the inner part of the waste artificial marble. Besides, it leads to unnecessary excessive gas during the partial carbonization of the polymethyl methacrylate (PMMA) and raises the risk of fire due to heat at an extremely high temperature. This study suggests the process of pyrolysis at the formation state after adding the starch to waste artificial marble to overcome above-mentioned problems. As the result of experiments, this method showed that the pyrolysis of waste artificial marble was greatly improved at comparatively low temperature condition of $350^{\circ}C$. Moreover, it also manifested the effect on securing the stability and energy savings necessary for the recovery of methyl methacrylate (MMA) and ${\alpha}$-alumina (${\alpha}-Al_2O_3$).

Effect of process conditions on crystal structure of Al PEO coating. II. Bipolar and electrolyte (알루미늄 PEO 코팅의 결정상에 미치는 공정 조건에 대한 연구 II. Bipolar 펄스와 전해액)

  • Kim, Bae-Yeon;Ham, Jae-Ho;Lee, Deuk Yong;Kim, Yong-Nam;Jeon, Min-Seok;Kim, Kiyoon;Choi, Ji-Won;Kim, Sung Youp;Kim, Kwang Youp
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.2
    • /
    • pp.65-69
    • /
    • 2014
  • Crystallographic phases of Plasma electrolytic oxidized Al alloy, A1100, A5052, A6061, A6063, A7075, were investigated. Two types of electrolyte $Na_2Si_2O_3$ and Na2P2O7 were also compared. Bipolar pulse, $2000{\mu}sec$ with $400{\mu}sec+420V$ impulse and $300{\mu}sec$ - impulse were applied for 20 min. ${\alpha}-alumina$, ${\gamma}-alumina$, ${\eta}-alumina$, $Al_{4.95}Si_{1.05}O_{9.52}$, and $(Al_{0.9}Cr_{0.1})_2O_3$ were mainly observed. Si, component of electrolyte, were moved into the PEO layer by bipolar pulse. Glassy phase was also observed at the surface of $Na_2Si_2O_3$ electrolyte treated PEO layer, and increased with the Mg content of Al alloy. It is concluded that at first glassy phase was formed by the micro plasma, and the high temperature of plasma turns glassy phase to several crystalline phases. And we could expect that many other crystalline phase could be formed by PEO process.

Surface Modification of Alumina Ceramic with Mg2Al4Si5O18 Glass by a Sol-Gel Process (졸-겔 공정으로 합성된 코디어라이트를 이용하여 알루미나의 표면개질)

  • Choi, Pil-Gyu;Chu, Min Cheol;Bae, Dong-Sik
    • Korean Journal of Materials Research
    • /
    • v.24 no.1
    • /
    • pp.48-52
    • /
    • 2014
  • The Mg-enriched magnesium aluminum silicate (MAS) glass is known for its higher mechanical strength and chemical resistance. Among such glasses, cordierite ($Mg_2Al_4Si_5O_{18}$) is well known to have a low thermal expansion and low melting point. Polycrystalline engineering ceramics such as alumina can be strengthened by a surface modification with low thermal expansion materials. The present study involves the synthesis of cordierite by a sol-gel process and investigates the effect of glass penetration on the surface of alumina. The cordierite powders were prepared from $Al(OC_3H_7)_3$, $Mg(OC_2H_5)_2$ and tetraethyl orthosilicate by hydrolysis and condensation reaction. The cordierite powders were characterized by X-ray diffraction (XRD, Rigaku), scanning electron microscope (SEM, JEOL: JSM-5610), energy dispersive spectroscopy (EDS, JEOL: JSM-5610), and universal testing machine (UTM, INSTRON). The X-ray diffraction patterns showed that the synthesized particles were ${\mu}$-cordierite calcined at $1100^{\circ}C$ for 1 h. The shape of synthesized cordierite was changed from ${\mu}$-cordierite to ${\alpha}$-cordierite with increasing calcination temperature. Synthesized cordierite was used for surface modification of alumina. Cordierite powders penetrated deeply into the alumina sample along grain boundaries with increasing temperature. The results of surface modification tests showed that the strength of the prepared alumina sample increased after surface modification. The strength of a surface modified with synthesized cordierite increased the most, to about 134.6MPa.

Effect of Seed Coating Layer on the Microstructure of NaA Zeolite Separation Layer Grown on ${\alpha}$-alumina Support (종결정 코팅층이 다공성 ${\alpha}$-알루미나 지지체 표면에 성장되는 NaA 제올라이트 분리층의 미세구조에 미치는 영향)

  • Kim, Min-Ji;Sharma, Pankaj;Han, Moon-Hee;Cho, Churl-Hee
    • Membrane Journal
    • /
    • v.24 no.5
    • /
    • pp.375-385
    • /
    • 2014
  • NaA zeolite/${\alpha}$-alumina composite membranes were hydrothermally synthesized at $100^{\circ}C$ for 24 hr by using nanosize seed of 100 nm in diameter and an ${\alpha}$-alumina support of $0.1{\mu}m$ in pore diameter, and then effect of seed coating layer on the microstructure of NaA zeolite separation layer was systematically investigated. In cases when nanosize seed was coated with a monolayer, increment in seed coverage induced small grained and thick NaA zeolite separation layer. On the other hand, in case when nanosize seed was coated with a multilayer, much small grained and thick separation layer was formed. It was clear that an uniform monolayer seed coating is required to grow hydrothermally a thin and defect-free NaA zeolite separation layer. In the present study, it was clearly announced that seed coating layer is a key factor to determine the microstructure of NaA zeolite layer, secondary grown on a porous support.

Synthesis of ${\alpha}$-Alumina Nanoparticles Through Partial Hydrolysis of Aluminum Chloride Vapor (염화알미늄 증기의 부분가수분해를 통한 알파 알루미나 나노입자 제조)

  • Park, Hoey Kyung;Yoo, Youn Sug;Park, Kyun Young;Jung, Kyeong Youl
    • Korean Chemical Engineering Research
    • /
    • v.49 no.5
    • /
    • pp.664-668
    • /
    • 2011
  • Spherical alumina precursors represented by $AlO_xCl_y(OH)_z$, 30~200 nm in particle diameter, were prepared by partial hydrolysis of $AlCl_3$ vapor in a 500 ml reactor. Investigated on the particle morphology and size were the effects of the reaction time, the stirring speed and the reaction temperature. The particle morphology and size was insensitive to the reaction time in the range 20 to 300 s. The variation of the stirring speed from 0 to 300 and 800 rpm showed that the particle size was the largest at 0 rpm. As the temperature was varied from 180 to 190, 200, $140^{\circ}C$, the particle size showed a maximum at $190^{\circ}C$. By calcination of the as-produced particles at $1,200^{\circ}C$ for 6h with a heating rate of $10^{\circ}C$/min, ${\alpha}$-alumina particles 45 nm in surface area equivalent diameter were obtained. The particle shape after calcination turned wormlike due to sintering between neighboring particles. A rapid calcination at $1400^{\circ}C$ for 0.5 h with a higher heating rate of $50^{\circ}C$/min reduced the sintering considerably. An addition of $SiCl_4$ or TMCTS(2,4,6,8-tetramethylcyclosiloxane) to the $AlCl_3$ reduced the sintering effectively in the calcination step; however, peaks of ${\gamma}$ or mullite phase appeared. An addition of $AlF_3$ to the particles obtained from the hydrolysis resulted in a hexagonal disc shaped alumina particles.

Effect of the Crystalline Phase of Al2O3 Nanoparticle on the Luminescence Properties of YAGG:Ce3+ Phosphor under Vacuum UV Excitation (진공자외선 여기에 의한 YAGG:Ce3+ 형광체의 광발광 특성에 미치는 Al2O3 나노입자 원료의 결정상의 영향)

  • Wu, Mi-Hye;Choi, Sung-Ho;Jung, Ha-Kyun
    • Korean Journal of Materials Research
    • /
    • v.22 no.4
    • /
    • pp.195-201
    • /
    • 2012
  • $Ce^{3+}$-doped yttrium aluminum gallium garnet (YAGG:$Ce^{3+}$), which is a green-emitting phosphor, was synthesized by solid state reaction using ${\alpha}$-phase or ${\gamma}$-phase of nano-sized $Al_2O_3$ as the Al source. The processing conditions and the chemical composition of phosphor for the maximum emission intensity were optimized on the basis of emission intensity under vacuum UV excitation. The optimum heating temperature for phosphor preparation was $1550^{\circ}C$. Photoluminescence properties of the synthesized phosphor were investigated in detail. From the excitation and emission spectra, it was confirmed that the YAGG:$Ce^{3+}$ phosphors effectively absorb the vacuum UV of 120-200 nm and emit green light positioned around 530 nm. The crystalline phase of the alumina nanoparticles affected the particle size and the luminescence property of the synthesized phosphors. Nano-sized ${\gamma}-Al_2O_3$ was more effective for the achievement of higher emission intensity than was nano-sized ${\alpha}-Al_2O_3$. This discrepancy is considered to be because the diffusion of $Al^{3+}$ into $Y_2O_3$ lattice is dependent on the crystalline phase of $Al_2O_3$, which affects the phase transformation of YAGG:$Ce^{3+}$ phosphors. The optimum chemical composition, having the maximum emission intensity, was $(Y_{2.98}Ce_{0.02})(Al_{2.8}Ga_{1.8})O_{11.4}$ prepared with ${\gamma}-Al_2O_3$. On the other hand, the decay time of the YAGG:$Ce^{3+}$ phosphors, irrespective of the crystalline phase of the nano-sized alumina source, was below 1 ms due to the allowed $5d{\rightarrow}4f$ transition of the $Ce^{3+}$ activator.

Preparation and Thermal Conductivity of Poly(organosiloxane) Rubber Composite with Low Hardness (저경도 Poly(organosiloxane) Rubber Composite의 제조와 열전도 특성)

  • Kang Doo Whan;Yeo Hak Gue
    • Polymer(Korea)
    • /
    • v.29 no.2
    • /
    • pp.161-165
    • /
    • 2005
  • $\alpha,\omega-Vinyl$ poly(dimethyl-methylphenyl) siloxane propelymer (VPMPS ) was prepared by the equilibrium polymerization of octamethylcyclotetrasiloxane $(D_4)$, 1,3,5-trimethyl-1,3,5-triphenylcyclotrisiloxane $(D_3^{MePh})$, and 1,1,3,3-tetramethyl-1,3-divinylsiloxane (MVS) as end-blocker. And also, $\alpha,\omega-hydrogen$ poly(dimethyl-methyltrifluoropropyl)siloxane prepolymer (HPDMFS) was prepared from $D_4$, 1,3,5-trimethyl-1,3.5-trifluoropropylcyclotrisiloxane $(D_3^{MeF3P})$, and 1,1,3,3-tetramethyldisiloxane. Poly(organosiloxane) rubber composite containing high thermal conductive filler was prepared by compounding VPMPS, HPDMFS, spherical alumina, and catalyst in high speed dissolver. The crosslinking density of poly (organosiloxane) composite was measured by oscillation rheometer. Poly(organosiloxane) composites of TC-POXR-2 and TC-POXR-4 prepared by controlling average diameters of thermal conductive filler, spherical alumina according to Horsfield's packing model were shown to 1.13 W/mK for TC-POXR-2 and 1.19 W/mK for TC-POXR-4.

Gas Separation of Pyrolyzed Polymeric Membranes: Effect of Polymer Precursor and Pyrolysis Conditions

  • Jung, Chul-Ho;Kim, Gun-Wook;Han, Sang-Hoon;Lee, Young-Moo
    • Macromolecular Research
    • /
    • v.15 no.6
    • /
    • pp.565-574
    • /
    • 2007
  • In this study, five representative, commercially available polymers, Ultem 1000 polyetherimide, Kapton polyimide, phenolic resin, polyacrylonitrile and cellulose acetate, were used to prepare pyrolyzed polymer membranes coated on a porous {\alpha}-alumina$ tube via inert pyrolysis for gas separation. Pyrolysis conditions (i.e., final temperature and thermal dwell time) of each polymer were determined using a thermogravimetric method coupled with real-time mass spectroscopy. The surface area and pore size distribution of the pyrolyzed materials derived from the polymers were estimated from the nitrogen adsorption/desorption isotherms. Pyrolyzed membranes from polymer precursors exhibited type I sorption behavior except cellulose acetate (type IV). The gas permeation of the carbon/{\alpha}-alumina$ tubular membranes was characterized using four gases: helium, carbon dioxide, oxygen and nitrogen. The polyetherimide, polyimide, and phenolic resin pyrolyzed polymer membranes showed typical molecular sieving gas permeation behavior, while membranes from polyacrylonitrile and cellulose acetate exhibited intermediate behavior between Knudsen diffusion and molecular sieving. Pyrolyzed membranes with molecular sieving behavior (e.g., polyetherimide, polyimide, and phenolic resin) had a $CO_2/N_2$ selectivity of greater than 15; however, the membranes from polyacrylonitrile and cellulose acetate with intermediate gas transport behavior had a selectivity slightly greater than unity due to their large pore size.

Microwave Synthesis of Alpha Alumina Platelets Using Flux Method (Flux법에 의한 알파 알루미나 판상체의 마이크로파 합성)

  • Park, Seong-Soo;Kim, Jun-Ho;Kim, Sung-Wan;Lee, Sung-Hwan;Park, Jae-Hyun;Park, Hee-Chan
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.5
    • /
    • pp.473-478
    • /
    • 2002
  • ${\alpha}-Al_2O_3$ platelets were synthesized by microwave heating the two different powder mixtures of $Al_2(SO_4)_3+2Na_2SO_4$ and ${\gamma}-Al_2O_3+2Na_2SO_4$ using flux method. DTA-TG, XRD and SEM were used to investigate the effect of microwave on the formation of ${\alpha}-Al_2O_3$ platelets. In the case of the mixture of $Al_2(SO_4)_3+2Na_2SO_4$, the microwave heated sample was ${\alpha}-Al_2O_3$ platelets composed of aggregates with smaller particle size compared to the conventionally heated sample. In the case of the mixture of ${\gamma}-Al_2O_3+2Na_2SO_4$, the temperature to form ${\alpha}-Al_2O_3$ platelets by the microwave heating was lower than that by the conventional heating and the morphology of the microwave heated sample was similar to that of the conventionally heated sample except that the microwave heated sample had smaller particle size compared to the conventionally heated sample.

Preparation of High Purity Alumina by Alkoxide Process (Aluminum Isopropoxide의 가수분해법에 의한 고순도 $\alpha$-Al2O3의 제조)

  • 백행남;이명기;곽중협;서태수
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.3
    • /
    • pp.445-451
    • /
    • 1989
  • Hydrolysis of aluminum isopropoxide with excess water in the presence of excess isopropyl alcohol resulted in the formation of boehmite in independence of temperature of hydrolysis and aging. Stoichiometric and substoichiometric amount of water hydrolyzed aluminum isopropoxide to pseudo-boehmite and amorphous one, respectively. $\alpha$-Al2O3 with 0.3${\mu}{\textrm}{m}$ in median size was produced by calcination of boehmite, bseudo-boehmite and amorphous boehmite at 125$0^{\circ}C$, 120$0^{\circ}C$, and 115$0^{\circ}C$ for one hour, respectively. Singnificant reduction in particle size was found during transition from $\theta$-Al2O3 to $\alpha$-Al2O3. $\alpha$-Al2O3 produced in this study was relatively uniform spherical and its purity was found to be over 99.9%.

  • PDF