• 제목/요약/키워드: ${\alpha}+{\beta}$ Titanium Alloy

검색결과 33건 처리시간 0.021초

2상 Ti-6Al-4V 합금, 준단상 Ti-6.85Al-1.6V 및 단상 Ti-7.0Al-1.5V 합금의 고온 변형거동에 관한 연구 (Constitutive Analysis of the High-temperature Deformation Behavior of Two Phase Ti-6Al-4V Near-α Ti-6.85Al-1.6V and Single Phase-α Ti-7.0Al-1.5V Alloy)

  • 김정한;염종택;박노광;이종수
    • 소성∙가공
    • /
    • 제14권8호통권80호
    • /
    • pp.681-688
    • /
    • 2005
  • The high-temperature deformation mechanisms of a ${\alpha}+{\beta}$ titanium alloy (Ti-6Al-4V), near-a titanium alloy (Ti-6.85Al-1.6V) and a single-phase a titanium alloy (Ti-7.0Al-1.5V) were deduced within the framework of inelastic-deformation theory. For this purpose, load relaxation tests were conducted on three alloys at temperatures ranging from 750 to $950^{\circ}C$. The stress-versus-strain rate curves of both alloys were well fitted with inelastic-deformation equations based on grain matrix deformation and grain-boundary sliding. The constitutive analysis revealed that the grain-boundary sliding resistance is higher in the near-${\alpha}$ alloy than in the two-phase ${\alpha}+{\beta}$ alloy due to the difficulties in relaxing stress concentrations at the triple-junction region in the near-${\alpha}$ alloy. In addition, the internal-strength parameter (${\sigma}^*$) of the near-${\alpha}$ alloy was much higher than that of the ${\alpha}+{\beta}$ alloy, thus implying that dislocation emission/ slip transfer at ${\alpha}/{\alpha}$ boundaries is more difficult than at ${\alpha}/{\beta}$ boundaries.

Ti-6Al-4Fe 합금의 가공열처리 미세조직 분석 (Microstructural Analysis of Thermo-Mechanical Processed Ti-6Al-4Fe Alloy)

  • 최병학;최원열;심종헌;박찬희;강주희;김승언;현용택
    • 한국재료학회지
    • /
    • 제25권8호
    • /
    • pp.410-416
    • /
    • 2015
  • Microstructural analysis of a (${\alpha}+{\beta}$) Ti alloy was investigated to consider phase transformation in each step of the thermo-mechanical process using by SEM and TEM EDS. The TAF (Ti-6Al-4Fe) alloy was thermo-mechanically treated with solid solution at $880^{\circ}C$, rolling at $880^{\circ}C$ and annealing at $800^{\circ}C$. In the STQ state, the TAF microstructure was composed of a normal hcp ${\alpha}$ and metastable ${\beta}$ phase. In a rolled state, it was composed of fine B2 precipitates in an ${\alpha}$ phase, which had high Fe segregation and a coherent relationship with the ${\beta}$ matrix. Finally, in the annealing state, the fine B2 precipitates had disappeared in the ${\alpha}$ phase and had gone to the boundary of the ${\alpha}$ and ${\beta}$ phase. On the other hand, in a lower rolling temperature of $704^{\circ}C$, the B2 precipitates were more coarse in both the ${\alpha}$ and the boundary of ${\alpha}$ and ${\beta}$ phase. We concluded that microstructural change affects the mechanical properties of formability including rolling defects and cracks.

Ti-Nb계 합금의 상변화가 기계적 성질에 미치는 영향 (Effects of phase changes on mechanical properties of Ti-Nb alloys)

  • 박효병
    • 대한치과기공학회지
    • /
    • 제27권1호
    • /
    • pp.9-17
    • /
    • 2005
  • The use of titanium alloys as biomaterials is increasing due to their superior biocompatibility and enhanced corrosion resistance compared to conventional stainless steels and cobalt-based alloys. Ti-6Al-4V ($\alpha+\beta$type) alloy instead of pure titanium ($\alpha$type) is being widely used as biomaterials has some characteristics such as high fatigue strength, tensile strength and corrosion resistance. But it has been reported recently that the vanadium element expresses cytotoxicity and the aluminium element is related with dementia of Alzheimer type and neurotoxicity. In order to overcome their detrimental effects, $\beta$-phase stabilizer Nb was chosen in the present study. This paper was described the influence of phase changes of Ti-Nb alloys on mechanical properties. Ti-3wt.%Nb($\alpha$type),Ti-20wt.%Nb($\alpha+\beta$type) and Ti-40wt.%Nb($\beta$type) alloys were melted by vacuum arc furnace. The specimens were homogenized at 1050$^{\circ}C$ for 24hr and were then hot rolled to 50% reduction. Each alloys were solution heat treated at $\beta$ zone and $\alpha+\beta$ zone after homogenization and then were aged. The mechanical properties of Ti alloys were analysed by hardness test, tensile test, elongation test and SEM test. The results can be summarized as follows: 1) The higher hardness value of $\alpha+\beta$type alloy was obtained compared to the, $\alpha,\beta$type alloys. 2) The aged treated showed better hardness compared to the solution heat treated, homogenized. 3) In the case of solution and aging treatment at $\beta$region, the $\alpha+\beta$type alloy showed the most highest tensile strength and $\beta$type alloy showed the best elongation.

  • PDF

시효처리에 따른 Ti-6Al-4Fe-0.25Si 합금의 미세조직 변화 (Microstructure Evolution of Ti-6Al-4Fe-0.25Si through Aging Heat Treatment)

  • 송용환;강주희;박찬희;김성웅;현용택;강남현;염종택
    • 대한금속재료학회지
    • /
    • 제50권7호
    • /
    • pp.477-485
    • /
    • 2012
  • The effect of aging heat treatment on microstructure evolution of the Ti-6Al-4Fe-0.25Si alloy with an initial microstructure of an elongated alpha was investigated. Aging treatments of the samples were carried out at $550^{\circ}C$ for up to 100 hours. The microstructure of the 5 hours heat-treated sample consisted of alpha grains, beta matrix and some TiFe intermetallic compounds that were precipitated from the beta matrix. Increasing the aging time to 10 hours, most of the beta matrix was decomposed to very fine alpha grains (${\sim}0.5{\mu}m$) and TiFe, and thus the volume fraction of the beta matrix was significantly decreased. EBSD analysis revealed that newly formed tertiary-alpha-grains in the vicinity of TiFe had high angle boundaries with respect to the primary and secondary alpha grains. As a result of these phase transformations during aging, the fraction of the alpha/alpha grain boundary was increased while that of the alpha/beta phase boundary was decreased.

DV-Xα 분자 궤도법을 이용한 고강도 타이타늄 합금 설계 (A Study on the Design of High-Stength Titanium Alloys Using DV-Xα Molecular Orbital Method)

  • 백민숙;윤동주;원대희;김병일
    • 대한금속재료학회지
    • /
    • 제49권9호
    • /
    • pp.739-745
    • /
    • 2011
  • Beta-type alloys are the most versatile class of titanium alloys. They offer the highest strength to weight ratios and very attractive combinations of strength, toughness, and fatigue resistance inlarge cross sections [1]. The present study was made to obtain useful information for the design of ${\beta}$-type titanium alloys with high-strength properties by using the $DV-X{\alpha}$ method. Employing two calculated parameters, the bond order (Bo) and the d-orbital energy level (Md) of alloying elements in ${\beta}$-type titanium alloy was introduced and used for prediction of mechanical properties. Thus, high-strength titanium alloys were designed by calculating the Md and Bo values of the previous and present titanium alloys.

열간압연에 의한 Ti-Nb계 합금의 미세조직 및 내식성에 대한 연구 (A study on microstruture and corrosion resistance of Ti-Nb alloys by hot rolling)

  • 박효병
    • 대한치과기공학회지
    • /
    • 제23권2호
    • /
    • pp.223-230
    • /
    • 2002
  • Pure titanium and Ti6Al4V alloy have been mainly used as implant materials but the cytotoxicity of V, neurotoxicity of Al resulting in Alzheimer disease had been reported. This paper was described the influence of composition of Ti-Nb alloys with 3 wt%Nb, 20 wt%Nb on the microstructure and corrosion resistance. Specimens of Ti alloys were melted in vacuum arc furnace and homogenized at $1000^{\circ}C$ for 24hr. The alloys were rolled in $\beta$ and ${\alpha}+{\beta}$ regions. The corrosion resistance of Ti alloys were evaluated by potentiodymic polarization test in 0.9% NaCl and 5% HCl solutions. The results can be summarized as follows: 1. The microstructure was transformed from $\alpha$ phase to ${\alpha}+{\beta}$ phase by adding Nb 2. The hardness of Ti-20Nb alloy was greater than Cp- Ti, Ti-3Nb alloy. 3. The corrosion resistance of Ti-20Nb alloy was better than that of Cp-Ti, Ti-3Nb alloy in 0.9%NaCl and 5%HCl solutions.

  • PDF

Ti 합금의 피로 특성 고찰 (Study for Fatigue Crack Propagation Behavior of Ti-alloy)

  • 정화일;조규종
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.786-789
    • /
    • 1997
  • Ti-6Al-4V has been used widely in biomedical field. But because of its toxicity, the ${\beta}$ stabilizing element, V, in Ti-6Al-4V has been replaced by Nb, Ta. Ti-10Ta-10Nb has been developed for biomedical applications. The fatigue crack propagation behavior of Ti-alloy(Ti-10Ta-10Nb) was investigated, in comparison with that of pure Ti. In order to better understand the fundamental fatigue behavior of Ti-10Ta-10Nb, rotating bending fatigue tests have been carried out. Ti-10Ta-10Nb has a better fatigue strength than pure Ti. In this paper, fatigue life has been predicted with Nisitani's equation of the fatigue crack propagation that can be established by measuring fatigue crack growth rates.

  • PDF

가공 열처리에 따른 Ti-10Ta-10Nb합금의 미세조직 및 기계적 특성 변화 (Effects of Thermomechanical Processing on Changes of Microstructure and Mechanical Properties in Ti-10Ta-10Nb Alloy)

  • 이도재;황주영;이경구;윤계림;전충극
    • 열처리공학회지
    • /
    • 제18권2호
    • /
    • pp.91-98
    • /
    • 2005
  • Both commercially pure titanium and Ti-6Al-4V alloy have been widely used as biomaterials because of their excellent biocompatibility, corrosion resistance and mechanical properties. However, in recent years, vanadium has been found to cause cytotoxic effects and adverse tissue reactions, while aluminium has been associated with potential neurological disorders. A newly designed ${\alpha}+{\beta}$ type Ti alloy, Ti-10Ta-10Nb alloy showed superior properties to CP Ti and Ti-6Al-4V alloy in the point of biomaterial, and elucidated the future uses as a biomaterial. Microstructural changes of Ti-10Ta-10Nb alloy after hot-rolling, warm-rolling, solution and aging treatment were investigated. According to TEM results, the microstructures after solution treatment were composed of mostly ${\alpha}$ phase with a trace of ${\beta}$ phase due to adding ${\beta}$-phase stabilizer tantalum and niobium. The microstructures after warm-rolling is coarse and elongated ${\alpha}$ phase and hot rolling resulted in very fine ${\alpha}$ widmanst$\ddot{a}$tten. The highest value of hardness was obtained by aging treatment at $400^{\circ}C$ for 20hr in which microstructure consisted of very fine ${\alpha}$ phase in ${\beta}$ matrix.

Nb 함량에 따른 Ti-Nb계 합금의 내식성에 대한 연구 (A study on corrosion resistance of Ti-Nb alloys by Nb contents)

  • 박근형
    • 대한치과기공학회지
    • /
    • 제28권1호
    • /
    • pp.61-66
    • /
    • 2006
  • Titanium alloys have been used for dental materials due to it's very good biocompatibility. Ti-6Al-4V alloy instead of pure titanium is being widely used as biomaterials has some characteristics such as high fatigue strength, tensile strength and corrosion resistance. But it has been reported recently that the vanadium element expresses cytotoxicity and carcinogenicity and the aluminium element is related with dementia of Alzheimer type and neurotoxicity. The Ti-Nb alloys has designed and examined corrosion resistance. Ti-3wt.%Nb($\alpha$type), Ti-20wt.%Nb(${\alpha}+{\beta}$type) and Ti-40wt.%Nb($\beta$type) alloys were melted by vacuum arc furnace. The corrosion resistance of Ti alloys was evaluated by potentiodynamic polarization test in the solution of 0.9% NaCl and 5% HCl. The results can be summarized as follows: 1) For the corrosion test in the solution of 0.9% NaCl and 5% HCl, the corrosion behaviour of Ti-Nb alloys was similar to ASTM grade 2 CP Ti. 2) The corrosion resistance of Ti-20Nb alloy was better than that of CP-Ti, Ti-3Nb, Ti-40Nb alloy in 0.9% NaCl and 5% HCl, solutions.

  • PDF

Ti-Nb계 합금의 세포독성에 관한 연구 (A study on cytotoxicity of Ti-Nb alloys)

  • 박효병
    • 대한치과기공학회지
    • /
    • 제25권1호
    • /
    • pp.89-94
    • /
    • 2003
  • The use of titanium alloys as biomaterials is increasing due to their superior biocompatibility and enhanced corrosion resistance compared to conventional stainless steels and cobalt-based alloys. Ti-6Al-4V ($\alpha+\beta$type) alloy instead of pure titanium ($\alpha$type) is being widely used as biomaterials has some characteristics such as high fatigue strength, tensile strength and corrosion resistance. It also has similar characteristics to Ti in inducing bony ingrowth. But it has been reported recently that the vanadium element expresses cytotoxicity and carcinogenicity and the aluminium element is related with dementia of Alzheimer type and neurotoxicity. In order to overcome their detrimental effects, $\beta$-phase stabilizer Nb was chosen in the present study. CP-Ti(ASTM grade 2), Ti-3wt.%Nb($\alpha$type), Ti-20wt.%Nb ($\alpha+\beta$type) and Ti-40 wt.%Nb($\beta$type) alloys were melted by vacuum arc furnace. Biocompatibility of Ti-Nb alloys was evaluated by cytotoxicity test. The results can be summarized as follows: 1. For the cytotoxicity test, Ti-Nb alloys showed excellent biocompatibility compared to CP-Ti(ASTM grade 2), 316L STS and Co-Cr alloys.

  • PDF