• Title/Summary/Keyword: ${\alpha}$-toxin

Search Result 86, Processing Time 0.023 seconds

Amino acid substitution on β and α of Cyt2Aa2 affects molecular interaction of protoxin

  • Thammachat, Siriya;Pungtanom, Nuanwan;Kidsanguan, Somruathai;Pathaichindachote, Wanwarang;Promdonkoy, Boonhiang;Krittanai, Chartchai
    • BMB Reports
    • /
    • v.43 no.6
    • /
    • pp.427-431
    • /
    • 2010
  • Cyt2Aa2 is a mosquito-larvicidal protein produced as a 29 kDa crystalline protoxin from Bacillus thuringiensis subsp. darmstadiensis. To become an active toxin, proteolytic processing is required to remove amino acids from its N- and C-termini. This study aims to investigate the functional role of amino acid residues on the N-terminal ${\beta}1$ and C-terminal ${\alpha}F$ of Cyt2Aa2 protoxin. Mutant protoxins were constructed, characterized and compared to the wild type Cyt2Aa2. Protein expression data and SDS-PAGE analysis revealed that substitution at leucine-33 (L33) of ${\beta}1$ has a critical effect on dimer formation and structural stability against proteases. In addition, amino acids N230 and I233-F237 around the C-terminus ${\alpha}F$ demonstrated a crucial role in protecting the protoxin from proteolytic digestion. These results suggested that ${\beta}1$ and ${\alpha}F$ on the Nand C-terminal ends of Cyt2Aa2 protoxin play an important role in the molecular interaction and in maintaining the structural stability of the protoxin.

Regulation of Gb3 Expression on Dendritic Cells (수지상세포에 있어서 베로독소 수용체의 발현조절)

  • Lim, Suk-Hwan;Kim, Gi-Young;Kim, Hyung-Chun;Kim, Young-Hee;Son, Yong-Hae;Oh, Yang-Hyo;Park, Yeong-Min
    • Journal of Life Science
    • /
    • v.17 no.4 s.84
    • /
    • pp.482-492
    • /
    • 2007
  • Infection with Shiga-like toxin (SLT)-producing Escherichia coli causes a spectrum of illnesses with high morbidity and mortality. Host mediators play an important role in the pathogenesis of SLT-I toxicity. We here investigated the effect of SLT-I on tumor necrosis $factor-{\alpha}\;(TNF-{\alpha})$ production, effect of $TNF-{\alpha}$ on glycolipid globotriaosyleramide (Gb3) expression, and relationship between Gb3 level and differential susceptibility of cells to SLT-I. In this study, we observed that detectable levels of $TNF-{\alpha}$ are produced 6 hrs after induction and continued to increase during 48 hrs by SLT-I. It was also found that Vero cells and dendritic cells expressed high levels of Gb3, 83% and 68%, respectively, and that macrophages had a low level of Gb3 (29%) and showed refractory to cytotoxicity against SLT-I. Vero cells and dendritic cells expressing high levels of Gb3 were highly susceptible to SLT-I. furthermore, macrophages showed a resistance to SLT-I cytotoxicity, despite the fact that Gb3 expression was enhanced. These results suggest that the expression of Gb3 is necessary, but not sufficient to confer sensitivity of macrophages to SLT-I and further underpin the important role of SLT-I and its receptor, Gb3, in the pathogenesis of E. coli O157 infection.

The activation of α2-adrenergic receptor in the spinal cord lowers sepsis-induced mortality

  • Kim, Sung-Su;Park, Soo-Hyun;Lee, Jae-Ryung;Jung, Jun-Sub;Suh, Hong-Won
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.5
    • /
    • pp.495-507
    • /
    • 2017
  • The effect of clonidine administered intrathecally (i.t.) on the mortality and the blood glucose level induced by sepsis was examined in mice. To produce sepsis, the mixture of D-galactosamine (GaLN; 0.6 g/10 ml)/lipopolysaccharide (LPS; $27{\mu}g/27{\mu}l$) was treated intraperitoneally (i.p.). The i.t. pretreatment with clonidine ($5{\mu}g/5{\mu}l$) increased the blood glucose level and attenuated mortality induced by sepsis in a dose-dependent manner. The i.t. post-treatment with clonidine up to 3 h caused an elevation of the blood glucose level and protected sepsis-induced mortality, whereas clonidine post-treated at 6, 9, or 12 h did not affect. The pre-treatment with oral D-glucose for 30 min prior to i.t. post-treatment (6 h) with clonidine did not rescue sepsis-induced mortality. In addition, i.t. pretreatment with pertussis toxin (PTX) reduced clonidine-induced protection against mortality and clonidine-induced hyperglycemia, suggesting that protective effect against sepsis-induced mortality seems to be mediated via activating PTX-sensitive G-proteins in the spinal cord. Moreover, pretreatment with clonidine attenuated the plasma tumor necrosis factor ${\alpha}$ ($TNF-{\alpha}$) induced by sepsis. Clonidine administered i.t. or i.p. increased $p-AMPK{\alpha}1$ and $p-AMPK{\alpha}2$, but decreased p-Tyk2 and p-mTOR levels in both control and sepsis groups, suggesting that the up-regulations of $p-AMPK{\alpha}1$ and $p-AMPK{\alpha}2$, or down-regulations of p-mTOR and p-Tyk2 may play critical roles for the protective effect of clonidine against sepsis-induced mortality.

Molecular Clonging and Hyperexpression of a Bt Gene, cryIAc, in Escherichia coli $DH5{\alpha}$: Production and Usage of Anti-CryIAc Antibody

  • RYOU, CHONGSUK;TAEYOUNG CHUNG;MOOSIK KWON
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.6
    • /
    • pp.1093-1098
    • /
    • 2001
  • The gene coding for a Lepidoptera-specific insecticidal crystalline (or control) protein (ICP), recognized as cryIAc, from Bacillus thuringiensis subsp. kurstaki HD-73, was cloned into the vector pBluscript ll SK-, and then transformed in Escherichia coli $DH5{\alpha}$. The clone was named EBtIAc and the chimeric phagemid, as pEBtIAc. Hyperexpression of CryIAc protoxin was observed in the extract of the culture of E. coli harboring pEBtIAc. Crystalline protoxin was purified by differential solubility. It was dissolved in alkaline pH, and exposed to trypsin to be activated. The molecular weights of the pro- and activated toxins on SDS-PAGE were estimated to be ca. 130 kDa and 60 kDa, respectively. The toxicity was tested by force-feeding larvae of gypsi moth (Lymantria diapar) with trypsinized protoxin. Using the batch of biologically active form of the toxin as an immunogen, anti-CryIAc antiserum was raised in a New Zealand white rabbit. Immunoglobulin G was fractionated from the seam by Protein-A sepharose affinity chromatography. Immunoreactivity of the antibody was examined by dot and Westerns blottings. It has been found that the anti- CryIAc antibody recognized the purified toxin at a level below a nanogram in terms of quantity. Using the antibody some of Bt-corns were able to be differentiated from tons of corn kernels which were imported from America as forage crops.

  • PDF

Transduced PEP-1-FK506BP ameliorates corneal injury in Botulinum toxin A-induced dry eye mouse model

  • Kim, Dae Won;Lee, Sung Ho;Ku, Sae Kwang;Cho, Soo Hyun;Cho, Sung-Woo;Yoon, Ga Hyeon;Hwang, Hyun Sook;Park, Jinseu;Eum, Won Sik;Kwon, Oh-Shin;Choi, Soo Young
    • BMB Reports
    • /
    • v.46 no.2
    • /
    • pp.124-129
    • /
    • 2013
  • FK506 binding protein 12 (FK506BP) belongs to a family of immunophilins, and is involved in multiple biological processes. However, the function of FK506BP in corneal disease remains unclear. In this study, we examined the protective effects on dry eye disease in a Botulinum toxin A (BTX-A) induced mouse model, using a cell-permeable PEP-1-FK506BP protein. PEP-1-FK506BP efficiently transduced into human corneal epithelial cells in a time- and dose-dependent manner, and remained stable in the cells for 48 h. In addition, we demonstrated that topical application of PEP-1-FK506BP was transduced into mouse cornea and conjunctiva by immunohistochemistry. Furthermore, topical application of PEP-1-FK506BP to BTX-A-induced mouse model markedly inhibited expression levels of pro-inflammatory cytokines such as interleukin-$1{\beta}$ (IL-$1{\beta}$), tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) and macrophage inhibitory factor (MIF) in corneal and conjunctival epithelium. These results suggest PEP-1-FK506BP as a potential therapeutic agent for dry eye diseases.

In vitro Protective Effects of Glehnia Littoralis on Alpha-amanitin Induced Hepatotoxicity (알파 아마니틴에 의한 간독성에 대한 갯방풍의 보호 효과)

  • Kim, Bo Hyun;Sun, Kyung Hoon;Kim, Sun Pyo;Park, Yongjin
    • Journal of The Korean Society of Clinical Toxicology
    • /
    • v.15 no.2
    • /
    • pp.107-115
    • /
    • 2017
  • Purpose: Glehnia littoralis has been used to treat ischemic stroke, phlegm, cough, systemic paralysis, antipyretics and neuralgia. The pharmacological mechanisms of Glehnia littoralis include calcium channel block, coumarin derivatives, anticoagulation, anti-convulsive effect, as well as anti-oxidant and anti-inflammatory effects. Alpha-amanitin (${\alpha}$-amanitin) is a major toxin from extremely poisonous Amanita fungi. Oxidative stress, which may contribute to severe hepatotoxicity was induced by ${\alpha}$-amanitin. The aim of this study was to investigate whether Glehnia littoralis ethyl acetate extract (GLEA) has the protective antioxidant effects on ${\alpha}$-amanitin -induced hepatotoxicity. Methods: Human hepatoma cell line HepG2 cells were pretreated in the presence or absence of GLEA (50, 100 and $200{\mu}g/ml$) for 4 hours, then exposed to $60{\mu}mol/L$ of${\alpha}$-amanitin for an additional 4 hours. Cell viability was evaluated using the MTT method. AST, ALT, and LDH production in a culture medium and intracellular MDA, GSH, and SOD levels were determined. Results: GLEA (50, 100 and $200{\mu}g/ml$) significantly increased the relative cell viability by 7.11, 9.87, and 14.39%, respectively, and reduced the level of ALT by 10.39%, 34.27%, and 52.14%, AST by 9.89%, 15.16%, and 32.84%, as well as LDH by 15.86%, 22.98%, and 24.32% in culture medium, respectively. GLEA could also remarkably decrease the level of MDA and increase the content of GSH and SOD in the HepG2 cells. Conclusion: In the in vitro model, Glehnia littoralis was effective in limiting hepatic injury after ${\alpha}$-amanitin poisoning. Its antioxidant effect is attenuated by antidotal therapy.

Paralytic Shellfish Poisoning of Mediterranean mussels from Jinhae Bay in Korea (진해만 해역에서 지중해담치 (Mytilus galloprovincialis)의 마비성패독 독화 양상)

  • Shon, Myung-Baek;Kim, Young-Soo;Kim, Chang-Roon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.42 no.4
    • /
    • pp.366-372
    • /
    • 2009
  • This study looked at toxicity of Mediterranean mussels, Mytilus galloprovincialis, which had accumulated paralytic shellfish toxins (PST) from early March to late May 2005 at Jinhae Bay, Korea. Alexandrium sp. was observed in low densities (< 1,000 cells/L) at the beginning of the study in March, increased rapidly in April, declined rapidly and disappeared in May. Although low densities of Alexandrium sp. were observed in March, mussel toxicity exceeded regulation level ($80{\mu}g$ STXeq. /100 g). Peak PSP (Paralytic Shellfish Poisoning) toxicity in the mussels occurred during high Alexandrium sp. cell densities in April. Mussels toxicity decreased with decline of Alexandrium sp. cell density. Major toxin components identified were $GTX_1$, $GTX_4$, followed by $C_1$, $C_2$, $GTX_2$, $GTX_3$ and neoSTX. Trace or sporadic toxin components were STX, $GTX_5$, $dcGTX_2$, $dcGTX_3$ and dcSTX. Toxin component analysis from the middle to end of the study showed that $11{\beta}$-epimers ($GTX_{3,4}$, $C_2$) were converted into $11{\alpha}$-epimers ($GTX_{1,2}$, $C_1$) and started to determine STX.

Ginseng Saponin Prevents the LPS-induced TNE-$\alpha$ Production in Mice

  • Kim, Kyoung-Mi;Kim, Hye-Ju;Ryu, Jae-Ha;Sohn, Dong-Hwan
    • Journal of Ginseng Research
    • /
    • v.24 no.2
    • /
    • pp.79-82
    • /
    • 2000
  • Saponins, the major component of ginseng root, mediate the pharmacological action of the ginseng. It has been reported that ginseng roots have protective effect against various toxins. In this study, the effects of ginseng total saponin (GTS) on tumor necrosis factor-alpha (TNF-$\alpha$) production induced by bacterial toxin was investigated. TNF-$\alpha$ level in lipopolysaccharides (LPS)-activated serum was remarkably reduced by intraperitoneal administration (50 mg/kg)of ginseng total saponin (GTS) into mice. The inhibitory effect against TNF-$\alpha$ production was not significant when GTS was given after the LPS injection, and by oral administration. These results suggested that ginseng root may have protective activity against liver damage accompanying the overproduction of TNF-$\alpha$ and GTS is the active component of ginseng.

  • PDF

재래식 메주에서 분리한 효모들의 각종 효소활성과 가능성

  • Lee, Jong-Soo;Yi, Sung-Hun;Kwon, Su-Jin;Ahn, Cheol;Yoo, Jin-Young
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.5
    • /
    • pp.448-453
    • /
    • 1997
  • Enzyme activities, production of killer toxin and some functionality of forty seven yeasts isolated from traditional Meju were investigated in culture broth and cell free extracts. Activities of $\alpha$-galactosidase, invertase and inulinase were detected in cell free extracts of 38 strains, 43 strains and 45 strains, respectively and acidic and neutral protease activities also were detected in culture broth of all the strains, $\beta$-Galactosidase activity was detected in cell free extracts of OE-20 and S-14 strains. Killer toxins were produced by OE-12, S-8 (Candida spp.), OE-19 (Zygosaccharomyces spp.) and S-3 (Saccharomyces spp.). Culture broth of OE-23 and S-9 showed 61.3% and 59.2% of antioxidant activity to $\alpha$, $\alpha$-diphenyl-$\beta$-picrylhydrazyl(DPPH), but nitrite-scavenging ability as well as inhibition of tyrosinase and polyphenol oxidase were not appeared in all the strains.

  • PDF

The Role of $Ca^{2+}$/Calmodulin-Dependent Protein Kinase II on the Norepinephrine and GTP-Increased Myosin tight Chain Phosphorylations in Rabbit Mesenteric ${\alpha}-toxin$ Permeabilized Artery (${\alpha}$-독으로 처리한 토끼창간막동맥에서 Norepinephrine과 GTP에 의한 마이오신 인산화의 증가에 대한 $Ca^{2+}$/calmodulin-dependent Protein Kinase II의 역할)

  • Ahn, Hee-Yul;Kim, Hun-Sik;Moreland, Robert S.
    • The Korean Journal of Pharmacology
    • /
    • v.30 no.1
    • /
    • pp.111-116
    • /
    • 1994
  • The role of $Ca^{2+}$/calmodulin-dependent protein kinase II in the increase of myofilament $Ca^{2+}$ sensitivity by agonist and GTP was investigated in rabbit mesenteric ${\alpha}-toxin$ permeabilized artery. $0.3{\mu}M\;Ca^{2+}$ increased myosin light chain phosphorylations monotonically. $10\;{\mu}M$ norepinephrine and $10\;{\mu}M$ GTP potentiated increase of myosin light chain phosphorylations by $0.3{\mu}M\;Ca^{2+}$, which reaches a peak at 5 min and gradually declines to the $Ca^{2+}$ alone level at 20 min. At the early phase (1 min), $10\;{\mu}M$ KN 62, the inhibitor of $Ca^{2+}$/calmodulin-dependent protein kinase II , decreased myosin light chain phosphorylation levels by $10\;{\mu}M$ norepinephrine and $10\;{\mu}M$ GTP in the presence of $0.3{\mu}M\;Ca^{2+}.\;However\;10\;{\mu}M$ KN-62 did not affect the myosin light chain phosphorylations by $10\;{\mu}M$ norepinephrine and $10\;{\mu}M$ GTP in the presence of $0.3{\mu}M\;Ca^{2+}$ at the peak (5 min) and plateau phases (20 min). From these results, the role of $Ca^{2+}$/calmodulin-dependent protein kinase II may be different depending on time, which may play a role in increase of myofilamint $Ca^{2+}$ sensitivity by norepinephrine and GTP resulting from increase of myosin light chain phosphorylations at the early phase. However, at plateau phase, $Ca^{2+}$/calmodulin-dependent protein kinase II may not be involved in the increase of myofilament $Ca^{2+}$ sensitivity by norepinephrine and GTP in rabbit mesenteric ${\alpha}-toxin$ permeabilized artery.

  • PDF