• Title/Summary/Keyword: ${\alpha}$-glucan

Search Result 123, Processing Time 0.027 seconds

Structural Properties of Cold Water Extractable ${\alpha}-D-glucan$ in Rice Flours (쌀가루 냉수추출 ${\alpha}-D-glucan$의 분자구조적 특성)

  • Park, Yong-Kon;Seog, Ho-Moon;Nam, Young-Jung;Choi, Kwang-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.603-610
    • /
    • 1990
  • The structural properties of cold water extractable ${\alpha}-D-glucan$ in rice flours obtained by various milling methods were investigated. The blue value, ${\lambda}_{max}$ values of the iodine complex and ${\beta}-amylolysis$ limit of the cold water extractable ${\alpha}-D-glucan$ were in the range of $0.026{\sim}0.030,\;518{\sim}522\;nm$ and $52.7{\sim}59.6%$, respectively, indicating these materials were composed mainly of amylopectin-like polymer. The gel chromatography on Sepharose CL-2B indicated that the cold water extractable ${\alpha}-D-glucan$ had lower molecular weight but wider molecular weight distribution than that of the original rice amylopectin. The Sephadex G-50 gel chromatography showed that the unit chain distribution of cold water extratable ${\alpha}-D-glucan$ after debranching with pullulanase was similar to that of rice amylopectin. And the ion chromatography of the distribution pattern of the chain length below D.P.30 in the debranched ${\alpha}-D-glucan$ indicated only blade-milled flour was similar to the amylopectin, but in the amount of unit chain below D.P.10, all the ${\alpha}-D-glucan$ in rice flours was higher than that of amylopectin.

  • PDF

Isolation of $\alpha$-1,3 Glucanase from Microorganism and the Prodution of High Activity $\alpha$-1,3 Glucanase for Hydrolysis of Dental Plaque (치면세균막 분해효소인 $\alpha$-1,3 glucanase를 생산하는 미생물의 분리 및 효소 특성)

  • 조효상;허태련;윤정원
    • Microbiology and Biotechnology Letters
    • /
    • v.21 no.3
    • /
    • pp.263-268
    • /
    • 1993
  • Seventeen strains were isolated from soil, cattle rumen, cereal sewage dregs, insect on agar plate containing insoluble glucan as a sole carbon source from immobilized Streptococcus mutans, which produced alpha-1,3 glucanase for lysis of dental plaque. Among these strains isolated from soil, SW-522 and SW-713 that had appeared to produce the high level of alpha-1,3 glucanase, degraded insoluble glucan from S. mutans 97.6% and 49.4%, respectively in 5 hours. The activity of crude alpha-1,3 glucanase from SW-522 was 1.3mg insoluble glucan/min.mg protein. This enzyme was entirely degraded insoluble glucan on glass tube which produced by S. mutans in TH medium with 5% sucrose.

  • PDF

Induction of Dectin-1 Expression and Intracellular Signal Transduction by β-Glucan of Ganoderma lucidum (불로초의 β-Glucan에 의한 Dectin-1 발현 유도와 세포 내 신호전달)

  • Ryu, Han Wook;Kim, Ha Won
    • The Korean Journal of Mycology
    • /
    • v.46 no.2
    • /
    • pp.161-176
    • /
    • 2018
  • Fungal ${\beta}$-glucan, known to have immunostimulatory and antitumor activities, can be recognized by host immune cells as one of the pathogen-associated molecular patterns (PAMPs). Although there are several reports on the diverse immunostimulatory activities of ${\beta}$-glucan, little is known about the intracellular signal transduction of ${\beta}$-glucan. Stimulation of RAW264.7 macrophage cells with ${\beta}$-glucan from Ganoderma lucidum induced the expressions of dectin-1, toll-like receptor 2 (TLR2), TLR4, and TLR6 at the transcription stage. Treatment with ${\beta}$-glucan also induced inflammatory mediators such as macrophage inflammatory proteins (MIP)-$1{\alpha}$, MIP-$1{\beta}$, MIP-$1{\gamma}$, interleukin (IL)-$1{\beta}$, and tumor necrosis factor (TNF)-${\alpha}$. Treatment of the cells with polymyxin B, an inhibitor of lipopolysaccharides (LPS), blocked the induction of inflammatory mediators in LPS- or ${\beta}$-glucan-stimulated systems. Pretreatment of the cells in our cell culture system with LY294002, a phosphoinositide 3-kinase (PI3K) inhibitor, or U0126, a mitogen-activated protein kinase/extracellular-signal-regulated kinase (MAPK/ERK) kinase (MEK)1/MEK2 inhibitor, led to a reduction in the induction of inflammatory mediators in a concentration-dependent manner. These results show that stimulation of the macrophage cells by ${\beta}$-glucan induced the expressions of both dectin-1 and TLRs. We also found that the PI3K/Akt and MEK pathways were involved in the induction of inflammatory mediators in macrophage cells during intracellular signal transduction of ${\beta}$-glucan.

Immunomodulating Activity of Fungal $\beta$-Glucan through Dectin-1 and Toll-like Receptor on Murine Macrophage

  • Kim, Ha-Won
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2006.11a
    • /
    • pp.103-115
    • /
    • 2006
  • $\beta$-Glucan is a glucose polymer that has linkage of $\beta$-(1,3), -(1,4) and -(1,6). As exclusively found in fungal and bacterial cell wall, not in animal, $\beta$-glucans are recognized by innate immune system. Dendritic cells (DC) or macrophages possesses pattern recognition molecule (PRM) for binding $\beta$-glucan as pathogen-associated molecular pattern (PAMP). Recently $\beta$-glucan receptor was cloned from DC and named as dectin-l which belongs to type II C-type lectin family. Human dectin-1 is consisted of 7 exons and 6 introns. The polypeptide of dectin-1 has 247 amino acids and has cytoplasmic, transmembrane, stalk and carbohydrate recognition domains. Dectin-1 could recognize variety of beta-1,3 and/or beta-1,6 glucan linkages, but not alpha-glucans. In our macrophage cell line culture system, dectin-1 mRNA was detected in RA W264.7 cells by reverse transcription-polymerase chain reaction (RT-PCR). Dectin-1 was also detected in the murine organs of spleen, thymus, lung and intestines. Treatment of RA W264.7 cells with $\beta$-glucans of Ganoderma lucidum (GLG) resulted in increased expression of IL-6 and TNF-$\alpha$ in the presence of LPS. However, GLG alone did not increase IL-6 nor TNF-$\alpha$. These results suggest that receptor dectin-1 cooperate with CD14 to activate signal transduction that is very critical in immunoresponse.

  • PDF

Comparative Study of Immune-Enhancing Activity of Crude and Mannoprotein-Free Yeast-Gluean Preparations

  • Kim, Hye-Nam;Lee, Jung-Nam;Kim, Gi-Eun;Ha-Lee, Young-Mie;Kim, Chan-Wha;Sohn, Jeong-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.6
    • /
    • pp.826-831
    • /
    • 1999
  • ${\beta}-Glucan$, one of the major cell wall components of Saccharomyces cerevisiae, is known to enhance the immune function, especially by activating macrophages. Accordingly, in an effort to develop a safe and efficient immune stimulatory agent, we prepared crude ${\beta}-glucan$ (glucan-p1) and partially purified ${\beta}-glucan$ that was free of mannoproteins (glucan-p2), and evaluated their effect on both the macrophage function and resistance to E. coli-induced peritonitis. To investigate the function of the macrophages, phagocytosis, $TNF-{\alpha}$ secretion, oxygen burst, and the expression of cytokine genes such as $IFN-{\gamma}$ and IL-12 were analyzed. Glucan-p2 markedly stimulated the macrophages with all these parameters. Glucan-p1, however, did not stimulate phagocytosis, yet it induced $TNF-{\alpha}$ secretion, oxygen burst, and the expression of $IFN-{\gamma}$ and IL-12, although less efficiently than glucan-p2. Finally, to test the in vivo protective effect of {\beta}-glucan against infection, the survival of mice from E. coli-induced peritonitis was investigated. After 24 h of the peritoneal challenge of E. coli, all of the mice treated with glucan-p2 survived whereas none survived in the control group. Glucan-p1 showed only a marginal effect in protecting the mice. These results suggest that mannoprotein-free gluean-p2, but not gluean-p1, can serve as an effective immune-stimulating agent.

  • PDF

Expression of Inflammatory Cytokines by Beta-glucan in Macrophage Cell Line (대식세포주에서 베타-글루칸에 의한 염증성 사이토카인의 발현)

  • Kim, Mi-Jeong;Ryu, Han-Wook;Cho, Gye-Hyung;Kim, Ha-Won
    • YAKHAK HOEJI
    • /
    • v.52 no.1
    • /
    • pp.73-78
    • /
    • 2008
  • Immune system can protect host attacking from a variety of microorganism and virus through innate and adaptive immunities. The innate immune system can be activated by recognition of conserved carbohydrates on the cell surface of pathogen resulting in protection, immunity regulation and inflammation. Immunostimulating and anti-tumor ${\beta}$-glucan, major cell wall component of many fungi, could be recognized as pathogen associated molecular pattern (PAMP) by C-type lectin such as pathogen recognition receptor (PRR) of host innate immunity cells. In spite of many studies of basidiomycetes ${\beta}$-glucan on immunostimulation, little is known about the precise mechanism as molecular-level. Among C-type lectins, dectin-1 was cloned and reported as a ${\beta}$-glucan receptor. In this report, we demonstrated induction of cytokine gene transcription by Ganoderma lucidum ${\beta}$-glucan in the absence or presence of lipopolysaccharide (LPS) by RT-PCR analysis. The expression of murine dectin-1 (MD-1) on RAW264.7 macrophage by RT-PCR showing both the full length, 757 bp $(MD-1{\alpha})$ and alternative spliced form, 620 bp $(MD-1{\beta})$. Both $MD-1{\alpha}$ and $MD-1{\beta}$ mRNAs were induced by ${\beta $-glucan both in the absence and presence of LPS. To explore expression of inflammatory cytokines by ${\beta}$-glucan, RAW264.7 cells were treated with ${\beta}$-glucan for 12 hours. As a result, the expressions of IL-1 IL-6, IL-l0 and $TNF-{\alpha}$ were increased by ${\beta}$-glucan treatment in a dose-dependent fashion. From these results, ${\beta}$-glucan induced transcriptions of dectin-1 and immune activating cytokine genes, indicating induction of immune allertness by expressing dectin-1 and secreting inflammatory cytokines.

Potentiation of Innate Immunity by β-Glucans

  • Seong, Su-Kyoung;Kim, Ha-Won
    • Mycobiology
    • /
    • v.38 no.2
    • /
    • pp.144-148
    • /
    • 2010
  • $\beta$-Glucans have been known to exhibit antitumor activities by potentiating host immunity by an unknown mechanism. The C-type lectin dectin-1, a $\beta$-glucan receptor, is found on the macrophage and can recognize various $\beta$-glucans. Previously, we demonstrated the presence of $\beta$-glucan receptor, dectin-1, on the Raw 264.7 cells as well as on murine mucosal organs, such as the thymus, the lung, and the spleen. In order to investigate immunopotentiation of innate immunity by $\beta$-glucan, we stimulated a murine macrophage Raw 264.7 cell line with $\beta$-glucans from Pleurotus ostreatus, Saccharomyces cerevisiae, and Laminaria digitata. Then, we analyzed cytokines such as tumor necrosis factor (TNF)-$\alpha$ and interleukin (IL)-6 by reverse transcription-polymerase chain reaction (RT-PCR). In addition we analyzed gene expression patterns in $\beta$-glucan-treated Raw 264.7 cells by applying total mRNA to cDNA microarray to investigate the expression of 7,000 known genes. When stimulated with $\beta$-glucans, the macrophage cells increased TNF-$\alpha$ expression. When co-stimulation of the cells with $\beta$-glucan and lipopolysaccharide (LPS), a synergy effect was observed by increased TNF-$\alpha$ expression. In IL-6 expression, any of the $\beta$-glucans tested could not induce IL-6 expression by itself. However, when co-stimulation occurred with $\beta$-glucan and LPS, the cells showed strong synergistic effects by increased IL-6 expression. Chip analysis showed that $\beta$-glucan of P. ostreatus increased gene expressions of immunomodulating gene families such as kinases, lectin associated genes and TNF-related genes in the macrophage cell line. Induction of TNF receptor expression by FACS analysis was synergized only when co-stimulated with $\beta$-glucan and LPS, not with $\beta$-glucan alone. From these data, $\beta$-glucan increased expressions of immunomodulating genes and showed synergistic effect with LPS.

(1-3, 1-4)-$\beta$-Glucan and Starch Contents and Their Hydrolytic Enzyme Activities in Developing Barley Kernels (등숙 중인 보리 종실중 (1-3, 1-4)-$\beta$-Glucan과 전분 함량 및 이들의 가수분해효소 활성)

  • 윤성중;박상래;유남희
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.42 no.4
    • /
    • pp.403-409
    • /
    • 1997
  • To obtain information on the accumulation of (1-3, 1-4)-$\beta$-glucans during kernel maturation, (1-3, 1-4)-$\beta$-glucan contents and (1-3, 1-4)-$\beta$-glucanase activities were determined in developing kernels of the two Korean cooking barley varieties, Neulssalbori and Saessalbori. (1-3, 1-4)-$\beta$-Glucan contents in kernels at 5 and 10 days after anthesis(DAA) were very low and the contents increased rapidly in kernels at 15 to 25 DAA. (1-3, 1-4)-$\beta$-Glucan content in kernels at harvest was about 3.5 to 4% of kernel dry matter. (1-3, 1-4)-$\beta$-Glucanase activities were relatively higher in younger kernels but the levels of the activity were very low compared with those in germinating kernels. A significant negative correlation was observed between (1-3, 1-4)-$\beta$-glucan contents and (1-3, 1-4)-$\beta$-glucanase activities. Low levels of (1-3, 1-4)-$\beta$-glucanase activites in kernels at 15 to 30 DAA, however, may indicate that (1-3, 1-4)-$\beta$-glucanases have little effect on the final content of (1-3, 1-4)-$\beta$-glucans in barley kernels. Starch contents and $\alpha$-amylase activities were also determined in developing barley kernels. Starch contents increased rapidly as kernels matured and the content at harvest was about 60% of kernel dry matter. Relativley higher levels of $\alpha$-amylase activities in kernels at the earlier developmental stage decreased rapidly as kernels matured.

  • PDF

Nitric Oxide, TNF-${\alpha}$ and TGF-${\beta}$ Formation of Rat Kupffer Cell Activated by the ${\beta}$-Glucan from Ganoderma lucidum (영지의 ${\beta}$-glucan성 다당류에 의해 활성화된 흰쥐 간내 Kupffer 세포의 NO, TNF-${\alpha}$ 및 TGF-${\beta}$ 형성)

  • Han, Man-Deuk;Lee, June-Woo;Jeong, Hoon;Kim, Yong-Seok;Ra, Su-Jung;Yoon, Kyung-Ha
    • Microbiology and Biotechnology Letters
    • /
    • v.27 no.1
    • /
    • pp.28-34
    • /
    • 1999
  • Ganoderan (GAN), an immunomodulating ${\beta}$-glucan from mushroom Ganoderma lucidum, was evaluated for its ability to induce formation of nitric oxide (NO), tumor necrosis factor-${\alpha}$(TNF-${\alpha}$) and transforming growth factor (TGF-${\beta}$) from rat Kupffer cell in vitro. Hepatic macrophages activated by GAN significantly elevated concentration of NO and TNF-${\alpha}$ in cultured medium, but not significantly elevated that of TGF-${\beta}$. GAN-activated Kupffer cells secrete 14.9${\mu}$M (p<0.01) of NO and 2619.5${\rho}$g/ml (p<0.01) of TNF-${\alpha}$after 36hr of incubation at 37$^{\circ}C$. The results revealed that GAN enhanced 4-fold production of NO and 19 fold formation of TNF-${\alpha}$ compared to the control. The proliferation of GAN-activated Kupffer cells was inhibited as compared with its negative control. Comparing the activity among glucans derived from microorganisms, highly branched zymosan, glucomannan from Saccharomyces cerevisiae, significantly increased TNF-${\alpha}$ and NO production. These results indicate that the ${\beta}$-glucan from G. lucidum activates rat Kupffer cell and secretes NO and TNF-${\alpha}$. It also suggest that rat Kupffer cell posses certain receptor for ${\beta}$-anomeric glucan.

  • PDF

β-glucan Stimulates Release of TNF-α in Human Monocytic THP-1 Cells (인간 단핵구 THP-1 세포에서 β-glucan으로 인한 TNF-α 분비 증가 효과)

  • Keum, Bo Ram;Hyeon, Jin Yi;Choe, So Hui;Jin, Ji Young;Jeong, Ji Woo;Lim, Jong Min;Park, Dong Chan;Cho, Kwang Keun;Choi, Eun Young;Choi, In Soon
    • Journal of Life Science
    • /
    • v.27 no.11
    • /
    • pp.1256-1261
    • /
    • 2017
  • ${\beta}$-glucan is a constituent of the cell wall of fungi, yeast and plants. It plays an important role in the immune system such as activation of immunocyte, release of pro-inflammatory and anti-cancer effect. The immune system maintains a healthy immune homeostasis. However, when pathogenic substances enter the body, immune homeostasis can break down and disease can be triggered. Therefore, we studied a substance that regulates immune homeostasis. The purpose of the study we demonstrated whether the ${\beta}$-glucan can be applied to the immune-modulation effects in human monocytic THP-1 cells. ${\beta}$-glucan was incubated in THP-1 cells at various concentrations. The $TNF-{\alpha}$ mRNA expression and protein levels were analyzed by ELISA and Real-time PCR. Additionally, the expression of MAPKs (p38 and JNK), $I{\kappa}B-{\alpha}$ and $NF-{\kappa}B$ p50 were analyzed by western blot. ${\beta}$-glucan enhanced the production of $TNF-{\alpha}$ mRNA expression and protein levels in human monocytic THP-1 cells. In addition, activation of MAPKs (p38 and JNK) and $NF-{\kappa}B$ p50 induced by ${\beta}$-glucan were increased. The study suggests that ${\beta}$-glucan contributes to immune-stimulation effect by production $TNF-{\alpha}$ in human monocytic THP-1 cells, and that MAPKs and $NF-{\kappa}B$ p50 are involved in the process. Synthetically, we have suggested ${\beta}$-glucan may be improved to immune system effect in human monocytic THP-1 cells.