• Title/Summary/Keyword: $^1H$-nmr spectrum

Search Result 231, Processing Time 0.039 seconds

Isolation and Structural Determination of Antifungal Antibiotic from Streptomyces hygroscopicus MJM1004 (Streptomyces hygroscopicus MJM1004가 생산하는 항진균성 항생 물질의 분리 및 구조 결정)

  • Bae, Ju-Yun;Kwon, Hyong-Jin;Suh, Joo-Won
    • Applied Biological Chemistry
    • /
    • v.42 no.4
    • /
    • pp.271-276
    • /
    • 1999
  • Several Streptomyces strains were tested for potent antifungal agents active against phytopathogenic fungi. Among the tested, S. hygroscopicus MJM1004 showed a potent antifungal activity when assayed using Candida albicans as indicator organism. With the strain of MJM1004, fermentation medium for the production of an antifungal agent was developed with varying carbon sources, nitrogen sources, and mineral elements, which resulted in the highest productivity in the medium containing 2% soybean meal, 1% glucose, 2% starch, 0.3% $CaCO_3$, 0.05% $MgSO_4{\cdot}7H_2O$, 0.05% $K_2HPO_4$. The active compound showed a broad spectrum of antifungal activity against several plant pathogenic fungi. The antifungal compound was purified and showed the physicochemical characteristics similar to azalomycin F complex in NMR and MS analysis.

  • PDF

$^1H$ NMR Studies of the Interaction between Cytochrome c3 and ferredoxin I from D. Vularis Miyazaki F

  • 박장수;정인철;김안드레;박남규;김동구;서홍석;강신원
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.5
    • /
    • pp.543-546
    • /
    • 1999
  • Heme assignment of the 1HNMR spectrum of cytochrome c3 of D. vulgaris Miyazaki F was established [Reference: 12, 13]. The major reduction of the heme turned out to take place in the other of heme 4, 1, 2 and 3 (in the sequential numbering). The Hemes with the smallest and greatest solvent accessibility were reduced at the highest and lowest potentials in average, respectively. A cooperation interheme interaction was attributed to a pait of the closest hemes, namely, hemes 1 and 2. This assignment can provide the physicochemical bases for the elucidation of electron transfer of this protein.

Efficient Blue Light Emitting Diode by Using Anthracene Derivative with 3,5-Diphenylphenyl Wings at 9- and 10-Position

  • Kim, Yun-Hi;Lee, Sung-Joong;Jung, Sang-Yun;Byeon, Ki-Nam;Kim, Jeong-Sik;Shin, Sung-Chul;Kwon, Soon-Ki
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.3
    • /
    • pp.443-446
    • /
    • 2007
  • The novel blue light emitting material, 9,10-bis(3',5'-diphenylphenyl)anthracene (BDA) was synthesized by Suzuki coupling reaction and characterized by the measurements of 1H NMR, 13C NMR and FT-IR. The new anthracene derivative, which contains anthracene as a main core unit and 3',5'-diphenylphenyl group derivative as wings, has high fluorescence yield, good thermal stability, and high glass transition temperature at 188 oC. With the newly non-doped blue emitting material in the multilayer device structure, it was possible to achieve the current efficiency of 3.0 cd/A. The EL spectrum of the ITO/CuPc/α-NPD/BDA/Alq3/LiF/Al device showed a maximum wavelength (λmax) at 440 nm. The emitting color of device showed the blue emission (x,y) = (0.18,0.19) at 10 mA/cm2 in CIE (Commission Internationale de l'Eclairage) chromaticity coordinates.

Structural Analysis of Natural Indigo Colorants Extracted from Polygonum tinctorium (천연인디고 색소의 구조분석)

  • Chung, In-Mo;Lee, Kwang-Gill;Sung, Gyou-Byung;Kim, Hyun-Bok;Nam, Sung-Hee;Hong, In-Pyo
    • Journal of Sericultural and Entomological Science
    • /
    • v.49 no.1
    • /
    • pp.8-13
    • /
    • 2007
  • Natural indigo colorants were prepared by extraction of Polygonum tinctorium which was harvested just in the blooming season(in the late of July). The components were analyzed by TLC and HPLC, and its structures were analyzed by FT-IR, EI-mass. The results obtained are summarized as follows; The natural indigo powder was dissolved in DMSO and developed in eluent, $CHCI_3/CH_3CN$(8.5:1.5 v/v) by means of TLC for its quality analysis. It was segregated into indirubin as a red colour and indigo as a blue colour. In case of HPLC analysis,. FT-IR spectrum of indirubin showed a peak for NH residue between 3200 and $3300cm^{-1}$. $^1H-NMR$ spectrum for indigo displayed AA'BB' spin system caused by indole structure between 6.5 and 7.7ppm of H4, 5, 6 and 7, and -NH proton for indirubin showed an singlet between 10.88 and 11.0ppm. EI-mass spectrum of indigo and indirubin both disclosed their molecular size as 262 and it implies that these two substances are isomer.

Synthesis, Protonation Constants and Stability Constants for Transition Metal ions(II) of 1, 15-Bis(2-Hydroxybenzyl)-2, 6, 10, 14-Tetraazapentadecane (1, 15-Bis(2-Hydroxybenzyl)-2, 6, 10, 14-Tetraazapentadecane 리간드합성, 양성자 해리상수 및 전이금속에 대한 안정도 상수결정)

  • Kim, Sun-Deuk;Kim, Jun-Kwang;Lee, Woo-Sik
    • Analytical Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.810-814
    • /
    • 2000
  • The open-chain hexadentate $N_4$, $O_2$ ligands 1, 15-bis(2-hydroxybenzyl)-2, 6, 10, 14-tetraazapentadecane (BSATPD. 4HCl) has been synthesized as its tetrahydro-chloride salt and characterized by EA, IR, NMR, and Mass spectrum. Its protonation constants ($logK_n{^H}$) and stability constants ($logK_{ML}$) for $Cu^{2+}$, $Ni^{2+}$, $Co^{2+}$ and $Zn^{2+}$ ions were determined in aqueous solution by potentiometry and compared with those of analogous $N_4$, $O_2$ ligands contain ethtylenic spacers or propylenic spacers, which make six-membered chelate rings between the aliphatic nitrogen atoms.

  • PDF

Purification of Antifungal Antibiotic NH-B1 from Actinomycete NH 50 Antagonistic to Plant Pathogenic Fungi (식물병원진균에 길항효과가 있는 방선균 균주 NH50에서 항진균성 항생물질 NH-B1의 순수 분리)

  • 김현겸;김범석;문석식;황병국
    • Korean Journal Plant Pathology
    • /
    • v.14 no.3
    • /
    • pp.191-202
    • /
    • 1998
  • About 300 actinomycetes were isolated from two forest and one sea-shore soil and tested for inhibitory effects on mycelial growth of six plant pathogenic fungi Magnaporthe grisea, Alternaria mali, Colletotrichum gloeosporioides, Phytophthora capsici, Fusarium oxysporum f. sp. cucumerinum, and Rhizoctonia solani. Among 300 actinomycetes tested, only 16 actinomycetes showed the antifungal activity against the test fungi. Isolate NH 50 was selected for production and purification of antifungal antibiotic substances. Actinomycete isolate NH 50 displayed the broad antifungal spectra against 11 plant pathogenic fungi. To identify actinomycete isolate NH 50, cultural characteristics on various agar media, diaminopimelic acid type, and morphological characteristics by scanning electron microscopy were examined. As a result, actinomycete isolate NH 50 was classified as a rare actinomycete that had LL-DAP type and did not produce spores. After incubation of isolate NH 50 in yeast extract-malt extract-dextrose broth, antifungal compound NH-B1 that inhibited mycelial growth of some plant pathogenic fungi was purified from the methanol eluates of XAD-16 resins by a series of purification procedures, i.e., silica gel flash chromatography, C18 flash chromatography, Sephadex LH-20 column chromatography, silica gel medium pressure liquid chromatography (MPLC), C18 MPLC, and high pressure liquid chromatography (HPLC). UV spectrum and 1HNMR spectrum of antifungal compound NH-B1 dissolved in methanol were examined. The antibiotic NH-B1 showed the major peaks at 230 and 271.2nm. Based on the data of 1H-NMR spectrum, NH-B1 was confirmed to be an extremely complex polymer of sugars called polysaccharides. The antibiotic NH-B1 showed strong antifungal activity against Alternaria solani and Cercospora kikuchi, but weak activity against M. grisea.

  • PDF

A New Antioxidant Polyphenolic Compound from Two Korean Brown Algae

  • Park, Soo-Hee;Kim, Eun-Sook;Choi, Byoung-Wook;Lee, Bong-Ho
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.261.2-262
    • /
    • 2003
  • In the course of our researches for biologically active compound from Korean algae, purification of the methanolic extracts of two brown algae (Sagassum Sagamianum and Ishige Okamurae) collected off Jeju Island afforded an antioxidant polyphenolic compound (1). The molecular formular of 1 was established as C$\sub$24/H$\sub$16/ O$\sub$13/ on the basis of the FAB mass and $\^$13/C NMR spectrum. (omitted)

  • PDF

Furanocoumarins from the Root of Angelica dahurica

  • Baek, Nam-In;Ahn, Eun-Mi;Kim, Hae-Yeong;Park, Young-Doo
    • Archives of Pharmacal Research
    • /
    • v.23 no.5
    • /
    • pp.467-470
    • /
    • 2000
  • Five furanocoumarins including a new one were isolated from the root of Angelica dahurica by repeated silica gel column chromatography. Their chemical structures were determined to be isoimperatorin (1), oxypeucedanin hydrate-3"-butyl ether (2), imperatorin (3), knidilin (4), and oxypeucedanin hydrate (5). This represents the first study in which the compound 2 has been isolated and identified, The long-range coupling ($^{5}J$) in the $^1H$-NMR spectrum observed in the linear furanocoumarin skeleton was also investigated in detail.

  • PDF

Synthesis of Hole Transport Materials for Organic Light Emitting Device (유기발광디바이스용 정공수송재료의 합성)

  • Chung, Pyung-Jin;Cho, Min-Ju
    • Korean Journal of Materials Research
    • /
    • v.15 no.7
    • /
    • pp.448-452
    • /
    • 2005
  • This study was based on organic electroluminescence display. Especially, TPD and $\alpha-NPD$ for the hole transport materials were synthesized by Ullmann reaction. This reaction was conducted between 3­methylphenylamine, 1-naphthylamine and 4,4'-diiodobiphenyl in toluene containing CuCl catalyst and KOH base. The structural property of reaction products were analyzed by FT-IR, $^1H-NMR$ spectroscopy, and thermal stability, reactivity and PL property were analyzed by melting point, yield and emission spectrum, respectively. The photoluminescence spectra of a pure TPD and $\alpha-NPD$ were observed at approximately 416nm and 438nm respectively. In this study, it was known that the melting point, yield, PL properties of TPD and $\alpha-NPD$ were changed by substituent group of amines.

Characterization of the Effects of Silver Nanoparticles on Liver Cell Using HR-MAS NMR Spectroscopy

  • Kim, Si-Won;Kim, So-Sun;Lee, Sang-Mi;Kwon, Bo-Bae;Choi, Jin-Hee;Hyun, Jin-Won;Kim, Suhk-Mann
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.6
    • /
    • pp.2021-2026
    • /
    • 2011
  • AgNPs (silver nanoparticles) has been widely used for the commercial products, which have antimicrobial agent, medical devices, food industry and cosmetics. Despite, AgNPs have been reported as toxic to the mammalian cell, lung, liver, brain and other organs and many researchers have investigated the toxicity of AgNPs. In this study, we investigated toxicity of the AgNPs to the liver cell using metabolomics based on HRMAS NMR (High Resolution Magic Angle Spinning Nuclear Magnetic Resonance) technics, which could apply to the intact tissues or cells, to avoid the sample destruction. Target profiling and multivariative statistical analysis were performed to analyze the 1D $^1H$ spectrum. The results show that the concentrations of many metabolites were affected by the AgNPs in the liver cell. The concentrations of glutathione (GSH), lactate, taurine, and glycine were decreased and most of amino acids, choline analogues, and pyruvate were increased by the AgNPs. Moreover, the levels of the metabolites were recovered upto similar level of metabolites in the normal cell by the pre-treatment of NAC, external antioxidant. The results suggest that the depletion of the GSH by the AgNPs might induce the conversion of lactate and taurine to the pyruvate.