• Title/Summary/Keyword: $^1H$-Nuclear Magnetic Resonance

Search Result 309, Processing Time 0.028 seconds

Studies on the Nuclear Magnetic Resonance Spectra of (E)-1-Aryl-3-(2- and 3-thienyl)-2-propenones and Unique Observation of 4J and 5J Coupling in Their 1H-1H COSY

  • HanLee, In-Sook;Jeon, Hyun-Ju;Lee, Chang-Kiu
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.687-692
    • /
    • 2011
  • $^1H$ and $^{13}C$ NMR spectra of series of (E)-1-aryl-(2- and 3-thienyl)-2-propenones, that are aldol condensation products between 2- and 3-thiophenecarbaldehydes and m- and p-substituted acetophenones, were examined to make complete assignments of the chemical shifts. Long range couplings, $^4J$ and $^5J$, are observed in the $^1H-^1H$ COSY of both 2- and 3-thienyl compounds, which makes the elucidation of the conformation in solution possible. In contrast, the 2-furyl analogue shows the long range coupling phenomena, but the 3-furyl and phenyl analogues do not show similar phenomena.

Phase Transitions in $KTiOPO_4$Studied by$^{31}$P Nuclear Magnetic Relaxation

  • Kim, K. S.;Lee, C. H.;Lee, Cheol-Eui;N. S. Dalal;R. Fu;S. Y. Jeong;Kim, J. N.;Kim, S. C.
    • Journal of Magnetics
    • /
    • v.5 no.3
    • /
    • pp.73-75
    • /
    • 2000
  • Undoped and Cr-doped samples of electrooptic material KTiOPO$_4$ were studied by $^{31}$P nuclear magnetic resonance (NMR). Spin-lattice relaxation time ($T_1$) measurements manifested phase transition behaviors that are attributed to changes in the dominant charge carriers in different temperature ranges.

  • PDF

Metabolic Discrimination of Safflower Petals of Various Origins Using 1H NMR Spectroscopy and Multivariate Statistical Analysis

  • Whang, Wan-Kyun;Lee, Min-Won;Choi, Hyung-Kyoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.4
    • /
    • pp.557-560
    • /
    • 2007
  • The metabolic discrimination of safflowers from various geographical origins was performed using 1H nuclear magnetic resonance (NMR) spectroscopy followed by principal components analysis. With a combination of these techniques, safflower samples from different origins could be discriminated using the first two principal components (PC) of the 1H NMR spectra of the 50% methanol fractions. PC1 and PC2 accounted cumulatively for 91.3% of the variation in all variables. The major peaks in the 1H NMR spectra that contributed to the discrimination were assigned to fatty acid (terminal CH3), lactic acid, acetic acid, choline derivatives, glycine, and safflower yellow derivatives. In this study, we suggest that various types of safflower can be discriminated using PCA and 1H NMR spectra.

Multivariate Analysis on 1H-NMR Spectroscopy of Olive Flounder Paralichthys olivaceus Serum (1H-NMR 스펙트럼의 다변량통계분석을 통한 넙치(Paralichthys olivaceus)의 백신 반응의 지표물질 분석)

  • Cho, Ji-Young
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.45 no.4
    • /
    • pp.367-371
    • /
    • 2012
  • To investigate the relationship between metabolic changes in $^1H$-nuclear magnetic resonance (NMR) spectra and fish vaccination, serum was collected from olive flounders treated with a formalin-killed Edwardsiella tarda vaccine and used for $^1H$-NMR metabolite profiling. Principal component analysis and partial least squares were applied to the $^1H$-NMR profile to reduce its complexity and establish class-related clusters. Relative lipid regions were distinguished in vaccinated and non-vaccinated serum. Then, the lipids were extracted from the serum and analyzed. Triolein was identified.

Design of a Magnet Assembly for an NMR Based Sensor Using Finite Element Analysis

  • Cho, S.I.;Chung, C.H.;Kim, S.C.
    • Agricultural and Biosystems Engineering
    • /
    • v.1 no.1
    • /
    • pp.49-53
    • /
    • 2000
  • A magnet assembly is a critical element of a nuclear magnetic resonance(NMR) based sensor. Magnetic flux density and homogeneity are essential to its optimum performance. Geometry and magnet material properties determine the magnetic flux density and homogeneity of the assembly. This study was carried out to develop the design for a magnet assembly. A 2-D finite element model for the magnetic assembly was developed using ANSYS and evaluated the effects of adding shimming frames and steel bars in the corners of the rectangular steel cover which surrounded the magnet. The assembly was manufactured and evaluated. According to the ANSYS model, modified pole frames increased magnetic flux density by 8.3% and increased homogeneity by 83%. Addition of steel bars in the corners increased the magnetic flux density by 1%, and improved homogeneity up to three times. The difference between simulated and measured magnetic flux densities at the center point of the air gap was within 2.4%.

  • PDF

Isolation and Identification of Triterpenoids from the Mulberry (Morus alba) Root Bark (상백피(Morus alba root bark)로부터 triterpenoid의 분리 및 동정)

  • Jung, Jae-Woo;Park, Ji-Hae;Jung, Ye-Jin;Lee, Chang-Ho;Han, Daeseok;Baek, Nam-In
    • Journal of Applied Biological Chemistry
    • /
    • v.57 no.4
    • /
    • pp.295-299
    • /
    • 2014
  • The mulberry (Morus alba L.) root barks were extracted with 80% aqueous methanol at room temperature. The concentrated extract was partitioned as ethyl acetate (EtOAc), n-BuOH, and $H_2O$ fractions. From the EtOAc fraction, five triterpenoids were isolated through the repeated silica gel and octadecyl $SiO_2$ column chromatographies. According to the results of physico-chemical and spectroscopic data including nuclear magnetic resonance, mass spectrometry, and infrared, the chemical structures of the triterpenoids were respectively determined as ${\alpha}$-amyrin (1), ${\alpha}$-acetyl amyrin (2), lupeol (3), betulinic acid (4), and glutinol (5). Compounds 1, 3, and 5 were isolated for the first time from the mulberry root bark.

Proton and Deuteron Spin-Lattice Relaxation in Gaseous HD (HD 기체에서의 수소 및 중수소 원자핵 스핀-격자 완화시간에 관한 핵자기공명 연구)

  • ;R. E. Norberg
    • Journal of the Korean Magnetics Society
    • /
    • v.4 no.1
    • /
    • pp.52-55
    • /
    • 1994
  • The proton and deuteron spin-lattice relaxation times, $T_{1}(H)$ and $T_{1}(D)$, have been measured in HD between 30 K and 313 K in the pressure of 0.67 - 1.92 atm. The nuclear magnetic resonance frequencies are respectively 358.012 MHz for a proton and 58.958 MHz for a deuteron. From the measurements of $T_{1}(H)$ and $T_{1}(D)$ the ratio of the correlation times ${\tau}_{1}\;and\;{\tau}_{2}$ that are associated with the molecular angular momentum operators was obtained. The nuclear spin-lattice relaxation time at J = 1 state has been observed to have a temperature dependence being proportional to $T^{0.25}$.

  • PDF

Identification of Anti-Oxidant and Anti-Tyrosinase Activity of Phenolic Components Isolated from Betula schmidtii (박달나무로부터 분리된 페놀성 화합물의 항산화 및 Tyrosinase 저해 활성 연구)

  • Wang, Da-Hye;Chung, Ha Sook
    • The Korean Journal of Food And Nutrition
    • /
    • v.34 no.5
    • /
    • pp.553-559
    • /
    • 2021
  • The aim of study to investigate the phytochemicals and biological activities the bark of Betula schmidtii. The studies consisted of the solvent extraction, followed by the isolation of phenolic components 1~3 from ethyl acetate-soluble fraction of Betula schmidtii Bark. Their chemical structures were identified as arbutin (1), ρ-coumaric acid (2) and ferulic acid (3) using Ultraviolet-Visible (UV-Vis) Spectrophotometer, Electrospray Ionization Mass Spectrometry (ESI-MS) (negative ion mode), 1H-Nuclear Magnetic Resonance (NMR), 13C-NMR, 1H-1H Correlation Spectroscopy (COSY) and 1H-13C Hetero Nuclear Multiple Quantum Correlation (HMQC) spectral data. Compounds 1~3 shows the anti-oxidant effect with IC50 values of 29.74±1.52, 21.32±1.07 and 34.41±1.24 in 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity, respectively. Also, compounds 1~3 exhibited mushroom tyrosinase inhibitory activity with IC50 values of 31.14±1.07, 42.54±1.46 and 69.22±1.43 µM, respectively.

Flavonoids from the arial parts of Artemisia agryi and their antioxidant capacity through GSH recovery effect (황해쑥(Artemisia agryi)으로부터 flavonoid 화합물들의 분리 동정과 세포 내 GSH 회복능을 통한 항산화 활성 평가)

  • Hyeon Seon Na;Dahye Yoon;Hyeong-Ju Jeon;Dae Young Lee;Hyoung-Geun Kim
    • Journal of Applied Biological Chemistry
    • /
    • v.65 no.4
    • /
    • pp.247-252
    • /
    • 2022
  • The arial parts of Artemisia argyi were extracted with methanol : water (70:30), and the concentrates was partitioned into EtOAc (ethyl acetate), n-BuOH (normal butanol), and H2O (water) fractions. The repeated silica gel and ODS (octadecyl silica gel) column chromatographies for EtOAc and n-BuOH fractions led to isolation of four flavonoids without any ambiguity based on intensive interpretation of several spectroscopic data including nuclear magnetic resonance, and mass spectrometry. The chemical structure of the isolated compounds revealed to (2S)-naringenin (1), 3-methylkaempferol (2), 3,3'-dimethylquercetin (3), and 3,3',4'-trimethylquercetin (4). These four compounds were first isolated from A. argyi through this study. In this study, four compounds isolated from A. argyi showed an increase in glutathione mean and a decrease in glutathione heterogeneity so that the compounds uniformly raised the intracellular glutathione (GSH) level. Based on these results, it is considered that it can be used as a functional pharmacological material.

Solubility Enhancement of Flavonoids by Cyclosophoraose Isolated from Rhizobium meliloti 2011

  • Kang Si-Mook;Lee Sang-Hoo;Kwon Chan-Ho;Jung Seun-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.5
    • /
    • pp.791-794
    • /
    • 2006
  • Cyclosophoraose (cyclic $\beta-(1,2)-glucan$, Cys) isolated from Rhizobium meliloti, a soil microorganism, was used as a solubility enhancer for flavonoids. The complexes of the cyclic oligosaccharide with flavonoids were confirmed through $^1H$ nuclear magnetic resonance (NMR) spectroscopic analysis. Flavonoids solubilized by Cys were quantitatively analyzed through high-performance liquid chromatography (HPLC). Among the flavonoids tested, the solubility of naringenin was greatly enhanced by Cys, compared with other compounds. The solubility of naringenin was enhanced about 7.1-fold by adding 10 mM Cys, compared with a control. $^1H$ NMR spectroscopic analysis indicated that the H-6 and H-8 protons, which are located on the A ring of naringenin, were greatly shifted upfield upon the complexation with Cys. This result suggested that Cys showed a regioselective interaction with the naringenin molecule upon the complexation, resulting in the solubility enhancement of naringenin.