• Title/Summary/Keyword: $^1H$-Nuclear Magnetic Resonance

Search Result 309, Processing Time 0.034 seconds

Antifungal Effect of Triglycerol Monolaurate Synthesized by Lipozyme 435-Mediated Esterification

  • Zhang, Song;Xiong, Jian;Lou, Wenyong;Ning, Zhengxiang;Zhang, Denghui;Yang, Jiguo
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.4
    • /
    • pp.561-570
    • /
    • 2020
  • This study was designed to synthesize triglycerol monolaurate (TGML) with Lipozyme 435 as the catalyst, and explore its effects on the growth of Aspergillus parasiticus (A. parasiticus) and Aspergillus flavus (A. flavus) and the secretion of aflatoxin b1. The highest content of TGML (49.76%) was obtained at a molar ratio of triglycerol to lauric acid of 1.08, a reaction temperature of 84.93℃, a reaction time of 6 h and an enzyme dosage of 1.32%. After purification by molecular distillation combined with the washes with ethyl acetate and water, the purity of TGML reached 98.3%. Through characterization by electrospray-ionization mass spectrometry, infrared spectrum and nuclear magnetic resonance, the structure of TGML was identified as a linear triglycerol combined with lauroyl at the end. Finally, the inhibitory effects of TGML on the growths of A. parasiticus and A. flavus and the secretion of aflatoxin b1 were evaluated by measuring the colony diameter, the inhibition rate of mycelial growth and the content of mycotoxin in the media. The results indicated that TGML had a stronger inhibitory effects on colony growth and mycelial development of both toxic molds compared to sodium benzoate and potassium sorbate, and the secretions of toxins from A. parasiticus and A. flavus were completely suppressed when adding TGML at 10 and 5 mM, respectively. Based on the above results, TGML may be used as a substitute for traditional antifungal agents in the food industry.

Antioxidant activity of ethanol extract and methanol fractions via column chromatography from Psidium guajava Leaf (구아바 잎 추출물 및 컬럼크로마토그래피를 이용한 메탄올 분획물의 항산화 활성)

  • Byeoung-Kyu Choi
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.266-271
    • /
    • 2023
  • The antioxidant capacity of the Psidium guajava leaf extracted with EtOH and their MeOH fractions using column chromatography were evaluated by 1,1-diphenyl-2-picrylhydrazyl and 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid radical scavenging assays, total phenolic and flavonoid content, and Superoxide dismutase (SOD) assay. To determine its utility as a functional material, the crude extract was fractionated by flash column chromatography on ODS using a stepwise elution with combinations of MeOH/H2O and then all the fractions were also investigated. In the results of antioxidant activities, the 40% and 60% MeOH fractions show the meaningful values, and then the two fractions were selected to examine the isolation and identification of the major constituents via HPLC and nuclear magnetic resonance. Further purification led to isolation of two quercetin derivatives; quercitrin (1) and isoquercetin (2). Through SOD assay, some methanol fractions via column chromatography and isolated compounds showed improved antioxidant activities compared to the extract.

Pharmacokinetics of Propentofylline and the Quantitation of Its Metaolite Hydroxypropentofylline in Human Volunteers

  • Kwon, Oh-Seung;Chung, Youn-Bok;Kim, Min-Hee;Hahn, Hoh-Gyu;Rhee, Hee-Kyung;Ryu, Jae-Chun
    • Archives of Pharmacal Research
    • /
    • v.21 no.6
    • /
    • pp.698-702
    • /
    • 1998
  • Propentofylline (PPF, 3-methyl-1-(5-oxohexyl)-7-propylxanthine) has been reported to be effective for the treatment of both vascular dementia and dementia of the Alzheimer type. The pharmacological effects of PPF may be exerted via the stimulation of nerve growth factor, increased cerebral blood flow, and inhibition of adenosine uptake. The objectives of this experiment are to determine the kinetic behavior of PPF, to identify, and to quantify its metabolite in human. Blood samples were obtained from human volunteers following oral administration of 200mg of PPF tablets. For the identification and quantification of the metabolite, 3-methyl-1-(5-hydroxyhexyl)-7-propylxanthine (PPFOH), PPFOH was synthesized and identified by gas chromatography/mass spectroscopy (GC/MS) and $^1H$-nuclear magnetic resonance spectroscopy. The molecular weight of synthesized metabolite is 308 dalton. The PPF and PPFOH in plasma were extracted with diethyl ether and identified by electron impact GC/MS. The plasma concentrations of PPF and PPFOH were determined by gas chromatography/nitrogen phosphorus detector in plasma and their pharmacokinetic parameters were determined. The mean half-life of PPF was 0.74 hr. The areas under the curve (AUCs) of PPF and PPFOH were 508 and 460ng.hr/ml, respectively. $C_{max}$ of PPF was about 828.4ng/ml and the peak concentration was achieved at about 2.2 hr ($T_{max}$). These results indicate that PPF is rapidly disappeared from blood due to extensive metabolism into PPFOH.

  • PDF

Solubilization of Pyrimethamine, Antibacterial Drug, by Low-Molecular-Weight Succinoglycan Dimers Isolated from Shinorhizobium meliloti

  • Kim, Hwan-Hee;Kim, Kyoung-Tea;Choi, Jae-Min;Tahir, Muhammad Nazir;Cho, Eun-Ae;Choi, Young-Jin;Lee, Im-Soon;Jung, Seun-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.8
    • /
    • pp.2731-2736
    • /
    • 2012
  • The use of pyrimethamine as antibacterial drug is limited by the poor solubility. To enhance its solubility, we prepared complexes of pyrimethamine with low-molecular-weight succinoglycan isolated from Sinorhizobium meliloti. Low-molecular-weight succinoglycans are monomers, dimers, and trimers of the succinoglycan repeating unit. The monomers and dimers were separated into their three species (M1, M2, and M3) and four fractions (D1 to D4) using chromatographic techniques, which were shown to be nontoxic. The solubility of pyrimethamine was markedly increased up to 42 fold by succinoglycan D3, where the level of its solubility enhancement was even 8-20 fold higher comparing with cyclodextrin or its derivatives. The complex formation of succinoglycan D3 with pyrimethamine was confirmed by $^1H$ nuclear magnetic resonance spectroscopy, Fourier-transform infrared spectroscopy, differential scanning calorimetry, scanning electron microscopy, and molecular modeling studies. Herein, we suggest that the low-molecular-weight succinoglycans may be utilized as highly effective solubilizers of pyrimethamine for pharmaceutical purposes.

Cytotoxic Effect of Flavonoids from the Roots of Glycyrrhiza uralensis on Human Cancer Cell Lines (감초(Glycyrrhiza uralensis Fisch.)로부터 분리된 flavonoid의 인체 암세포에 대한 세포독성)

  • Park, Ji-Hae;Wu, Qian;Yoo, Ki-Hyun;Yong, Hye-Im;Cho, Sueng-Mock;Chung, In-Sik;Baek, Nam-In
    • Journal of Applied Biological Chemistry
    • /
    • v.54 no.1
    • /
    • pp.67-70
    • /
    • 2011
  • The roots of Glycyrrhiza uralensis Fisch. were extracted with 30% aqueous ethanol (EtOH), and the concentrated extract was partitioned with n-hexane, chloroform ($CHCl_3$), ethyl acetate (EtOAc), n-butanol (n-BuOH), and $H_2O$, successively. From the $CHCl_3$ fraction, four flavonoids were isolated through the repeated silica gel ($SiO_2$), octadecyl silica gel (ODS), and Sephadex LH-20 column chromatographies (c.c.). According to the results of spectroscopic data including nuclear magnetic resonance spectrometry (NMR), electron ionization mass spectrometry (EI/MS), and infrared spectroscopy (IR), the chemical structures of the compounds were determined as glabrol (1), abyssinone II (2), glabridin (3), and isoliquiritigenin (4). The flavonoids were evaluated for cytotoxic effect against human cancer cell lines, HCT-116, HepG2, HeLa, SK-OV-3, SK-BR-3, MCF-7, and SK-MEL-5. Especially, glabrol (1) and glabridin (2) showed $IC_{50}$ values of lower than $25{\mu}M$.

LC/MS-based Analysis of Bioactive Compounds from the Bark of Betula platyphylla var. japonica and Their Effects on Regulation of Adipocyte and Osteoblast Differentiation

  • Baek, Su Cheol;Choi, Eunyong;Eom, Hee Jeong;Jo, Mun Seok;Kim, Sil;So, Hae Min;Kim, Seon-Hee;Kang, Ki Sung;Kim, Ki Hyun
    • Natural Product Sciences
    • /
    • v.24 no.4
    • /
    • pp.235-240
    • /
    • 2018
  • Betula platyphylla var. japonica (Betulaceae), also known as Asian white birch, is an endemic medicinal tree, the bark of which has been used in Chinese traditional medicine for the treatment of various inflammatory diseases. In our continuing search for bioactive compounds from Korean natural resources, a phytochemical investigation of the bark of B. platyphylla var. japonica led to the isolation of 7-oxo-${\beta}$-sitosterol (1) and soyacerebroside I (2) from its ethanol extract as main components by liquid chromatography (LC)/mass spectrometry (MS)-based analysis. The structures of isolates were identified by comparison of $^1H$ and $^{13}C$ nuclear magnetic resonance spectroscopic data and physical data with the previously reported values and LC/MS analyses. To the best of our knowledge, this is the first study to demonstrate that the isolated compounds, 7-oxo-${\beta}$-sitosterol and soyacerebroside I, were isolated in B. platyphylla var. japonica. We examined the effects of the isolates on the regulation of adipocytes and osteoblast differentiation. These isolates (1 and 2) produced fewer lipid droplets compared to the untreated negative control in Oil Red O staining of the mouse mesenchymal stem cell line without altering the amount of alkaline phosphatase staining. The results demonstrated that both compounds showed marginal inhibitory effects on adipocyte differentiation but did not affect osteoblast differentiation.

Spectroscopic Characterization and Seasonal Distribution of Aquatic Humic Substances Isolated from Han River Water (한강원수로부터 분리된 수중휴믹물질의 계절적 분포와 분광학적 특성분석)

  • Kim, Hyun-Chul;Lee, Seock-Heon;Kim, Kyung-Ju;Yu, Myong-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.5
    • /
    • pp.540-547
    • /
    • 2007
  • Humic substances(HS) from Han River water was physic-chemically isolated by fractionational methods to investigate the seasonal distribution and to characterize the properties compared with intrinsic humic materials. Various HS samples were analyzed by element, Fourier transform infrared(FT-IR), proton nuclear magnetic resonance$(^1H-NMR)$ and fluorescence analyzers. The portion of HS from Han River water(HRHS) was 47.0% on the average, however it appeared that rainfall event brought about higher fraction of HS in Han River water by the periodic investigation. Aromaticity and humification degree of the HRHS were relatively lower than those of intrinsic humic materials originated from decomposing vegetation. FT-IR, $^1H-NMR$ and fluorescence spectroscopy showed the distinct differences between HRHS and intrinsic humic materials. Commercial humic materials could not represent structural and functional characteristics of local HS. The fluorescence spectroscopy, a relatively simple measurement, was found most useful tool to estimate humification degree for humic materials from particular sources.

Structural Analysis of Volatile Matters and Heavy Oil Fractions from Pyrolysis Fuel Oil by the Heat Treatment Temperature (열처리 온도에 따른 열분해 연료유 내 휘발유분 및 잔류 중질유분의 구조 분석)

  • An, Donghae;Kim, Kyung Hoon;Kim, Jong Gu;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.30 no.3
    • /
    • pp.297-302
    • /
    • 2019
  • In order to investigate structural changes of the pyrolysis fuel oil (PFO), the volatile matters and heavy oil fractions were separated from PFO by heat treatment temperature. As a result of $^1H-NMR$ analysis of volatile matters, 1~2 ring aromatic compounds contained in the petroleum residue were mostly removed at a temperature before $340^{\circ}C$. Moreover, new peaks corresponding to aliphatic hydrocarbons were detected at the chemical shift of 2.0~2.4 ppm. It is attributed that the aliphatic hydrocarbon sidechain was cracked from the aromatic compound by the cracking reaction occurred at $320^{\circ}C$. The C/H mole ratio and aromaticity increased with increasing the heat treatment temperature. Therefore, from the structural analysis results of heavy oil fractions and volatile matters from PFO, the decomposition of the aliphatic sidechain by cracking reaction and the separation of volatile matters by boiling point of components were mostly affected structure changes of the PFO.

Liquid Crystalline Properties of Dimers Having o-, m- and p- Positional Molecular Structures

  • Park, Joo-Hoon;Choi, Ok-Byung;Lee, Hwan-Myung;Lee, Jin-Young;Kim, Sung-Jo;Cha, Eun-Hee;Kim, Dong-Hyun;Ramaraj, B.;So, Bong-Keun;Kim, Kyung-Hwan;Lee, Soo-Min;Yoon, Kuk-Ro
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1647-1652
    • /
    • 2012
  • With the objective to design and synthesis of Schiff's base symmetrical liquid crystal dimmers and to study the effect of molecular structure variation ($o-ortho$, $m-meta$, $p-para$) and change in alkoxy terminal chain length on mesomorphic properties of liquid crystals, We have synthesized Schiff base dimers from dialdehyde derivative containing 2-hydroxy-1,3-dioxypropylene as short spacer with aniline derivatives having different lengths of terminal alkoxy chains ($n$ = 5, 7, 9). The chemical structure of the final products was characterized by proton nuclear magnetic resonance ($^1H$ NMR) spectroscopy and fourier transform infrared (FT-IR) spectroscopy. The mesomorphic properties and optical textures of the resultant dimers were characterized by differential scanning calorimetry (DSC) and polarized optical microscopy (POM). The existence of smectic A phase transition was confirmed by the observation of batonnets and fan shaped textures in optical microscopy when compound were heated from crystalline phase. All of the dimers of this series, with the exception of $\mathbf{2S_5}$ -ortho, -meta, -para, were thermotropic liquid crystal. The compound $\mathbf{2S_9}$ -meta was monotropic, while the rest were enantiotropic. It was found that the change in terminal alkoxy chain length has pronounced effect on the mesomorphic properties. The temperature range of smectic A phase window widens with increasing alkoxy chain length.

Purification and Structural Characterization of Cold Shock Protein from Listeria monocytogenes

  • Lee, Ju-Ho;Jeong, Ki-Woong;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.8
    • /
    • pp.2508-2512
    • /
    • 2012
  • Cold shock proteins (CSPs) are a family of proteins induced at low temperatures. CSPs bind to single-stranded nucleic acids through the ribonucleoprotein 1 and 2 (RNP 1 and 2) binding motifs. CSPs play an essential role in cold adaptation by regulating transcription and translation via molecular chaperones. The solution nuclear magnetic resonance (NMR) or X-ray crystal structures of several CSPs from various microorganisms have been determined, but structural characteristics of psychrophilic CSPs have not been studied. Therefore, we optimized the purification process to obtain highly pure Lm-Csp and determined the three-dimensional structure model of Lm-Csp by comparative homology modeling using MODELLER on the basis of the solution NMR structure of Bs-CspB. Lm-Csp consists of a ${\beta}$-barrel structure, which includes antiparallel ${\beta}$ strands (G4-N10, F15-I18, V26-H29, A46-D50, and P58-Q64). The template protein, Bs-CspB, shares a similar ${\beta}$ sheet structure and an identical chain fold to Lm-Csp. However, the sheets in Lm-Csp were much shorter than those of Bs-CspB. The Lm-Csp side chains, E2 and R20 form a salt bridge, thus, stabilizing the Lm-Csp structure. To evaluate the contribution of this ionic interaction as well as that of the hydrophobic patch on protein stability, we investigated the secondary structures of wild type and mutant protein (W8, F15, and R20) of Lm-Csp using circular dichroism (CD) spectroscopy. The results showed that solvent-exposed aromatic side chains as well as residues participating in ionic interactions are very important for structural stability. Further studies on the three-dimensional structure and dynamics of Lm-Csp using NMR spectroscopy are required.