• Title/Summary/Keyword: $^1H$-NMR Spectroscopy

Search Result 578, Processing Time 0.024 seconds

Synthesis of Dendritic Polystyrene-block-Linear Poly(t-butyl acrylate) Copolymers by an Amide Coupling (아미드 커플링을 통한 덴드리틱 Polystyrene-Block-Linear Poly(t-butyl acrylate) 공중합체의 합성)

  • Song, Jie;Cho, Byoung-Ki
    • Polymer(Korea)
    • /
    • v.33 no.2
    • /
    • pp.158-163
    • /
    • 2009
  • In this study, we synthesized a series of dendritic polystyrene-b-linear poly (t-butyl acrylate) copolymers with well-defined molecular architectures. The hydroxyl group located at the focal point of the second generation dendron bearing polystyrene ($M_n$ = 1000 g/mol) peripheries was converted into amine group via the following stepwise reactions: 1) tosylatoin, 2) azidation, and 3) reduction. On the other hand, the linear poly (t-butyl acrylate)s were prepared by an atom transfer radical polymerization (ATRP) of t-butyl acrylate where benzyl 2-bromopropanoate and Cu(I)Br/PMDETA were used as initiator and catalyst, respectively. To convert the end group of prepared poly (t-butyl acrylate) s into carboxylic acid, a debenzylation was performed using Pd/C catalyst under $H_2$ atmosphere. In the final step, dendritic-linear block copolymers were obtained through a simple amide coupling reaction mediated by 4-(dimethylamino) pyridine(DMAP) and N,N'-diisopropylcarbodiimide(DIPC). The resulting diblock copolymers were shown to have well-defined molecular weights and narrow molecular weight distributions as supported by $^1H$-NMR spectroscopy and gel permeation chromatography(GPC).

Synthesis and Characterization of Collagen Peptide Based Copolymer from Shaving Scrap (셰이빙 스크랩으로부터 콜라겐 펩타이드계 공중합체 합성과 특성)

  • Park, Min Seok;Shin, Soo Beom;Kim, Ho Soo;Kim, Min Soo;Kim, Ha Sun;Jang, Jae Hyeok;Lee, Jin Kye;Lee, Dong Kuk
    • Applied Chemistry for Engineering
    • /
    • v.33 no.6
    • /
    • pp.581-587
    • /
    • 2022
  • The leather industry generates a large amount of hazardous leather waste of various types every year. Among them, shaving scrap is difficult to recycle because it contains chromium ions. Many studies in recent years have shown that shaving scraps can be processed into various types of valuable products, such as adsorbent, filler, and poultry feed. In this study, collagen peptides were extracted from shaving scraps and structurally modified to be developed as new materials with improved physicochemical properties. First, the chromium ions contained in the shaving scraps were removed using a sodium hydroxide solution, and purified through concentration and low-temperature crystallization. The purified collagen peptide was used to prepare the powder using a spray dryer. The extracted collagen peptides were structurally modified by introducing double bonds by reacting with methacrylic anhydride (MAA), and the product was confirmed by 1H NMR spectroscopy. Next, a copolymer was prepared by redox polymerization of the modified collagen peptide (MCP) and 2-ethylhexyl acrylate (2-EHA). The structure of the copolymer was qualitatively confirmed by FT-IR. In conclusion, this study confirmed that collagen peptides can be extracted from shaving scrap and converted into new eco-friendly materials through certain treatments.

Counter anion effects in anion exchange membrane-fabricated non-aqueous vanadium redox flow battery

  • Son, Pyeong Soo;Oh, Min-Seok;Ye, Jun-Hee;Choi, Seong-Ho
    • Analytical Science and Technology
    • /
    • v.28 no.5
    • /
    • pp.341-346
    • /
    • 2015
  • In order to understand the counter anionic effects in a non-aqueous vanadium redox flow battery (VRFB), we synthesized four types of electrolyte salts (1-ethyltriethamine tertafluoroborate, [E-TEDA]+[BF4], 1-ethyltriethamine hexafluorophosphate, [E-TEDA]+[PF6], 1-butyltriethylamine tertafluoroborate, [B-TEDA]+[BF4], and 1-buthyltriethamine hexafluorophosphate [B-TEDA]+[PF6]) by counter anion exchange reaction after the SN2 reaction. We confirmed the successful synthesis of the electrolyte salts [E-TEDA]+[Br] and [B-TEDA]+[Br] via 1H-NMR spectroscopy and GC-mass analysis before the counter anion exchange reaction. The electric potential of the vanadium acetylacetonate, V(acac)3, as an energy storage chemical was shown to be 2.2 V in the acetonitrile solvent with each of the [E-TEDA]+[BF4], [E-TEDA]+[PF6], [B-TEDA]+[BF4], and [B-TEDA]+[PF6] electrolyte salts. In a non-aqueous VRFB with a commercial Neosepta AFN membrane, the maximum voltages reached 1.0 V and 1.5 V under a fixed current value of 0.1 mA in acetonitrile with the [E-TEDA]+[BF4] and [E-TEDA]+[PF6] electrolyte salts, respectively. The maximum voltage was 0.8 V and 1.1 V under a fixed current value of 0.1 mA in acetonitrile with the [B-TEDA]+[BF4] and [B-TEDA]+[PF6] electrolyte salts, respectively. From these results, we concluded that in the non-aqueous VRFB more of the [PF6] counter anion than the [BF4] counter anion was transported onto the commercial Neosepta AFN anion exchange membrane.

Antioxidative Compounds in Extracts of Acer ginnala Max. (신나무 추출물의 항산화 활성물질)

  • Han, Seong-Soo;Lo, Seog-Cho;Choi, Yong-Hwa;Kim, Myong-Jo;Kwak, Sang-Soo
    • Korean Journal of Medicinal Crop Science
    • /
    • v.7 no.1
    • /
    • pp.51-57
    • /
    • 1999
  • To search for antioxidative compounds from plant resources, methanol extracts of 45 plant species were investigated using DPPH method. The highest activity was shown in the methanol extract of Acer ginnala($RC_{50}\;:\;15{\mu}g$), followed by Stewartia koreana($RC_{50}\;:\;28{\mu}g$) and Carpinus laxiflora($RC_{50}\;:\;33{\mu}g$). Two antioxidative compounds were isolated from the methanolic extract of Acer ginnala Max and identified as acertannin(2, 6-di-O-galloyl-1, 5-anhydro-D-glucitol) and gallicin (methyl-3, 4, 5-trihydroxybenzoic acid) on the basis of mass spectroscopy, $^1H-\;and\;^{13}C-NMR$ data. The DPPH free radical scavenging activities of acertannin($RC_{50}\;:\;3.5{\mu}g$) and gallicin($RC_{50}\;:\;2.8{\mu}g$) were more effective than those of BHA($RC_{50}\;:\;14{\mu}g$) and ${\alpha}-tocopherol$ ($RC_{50}\;:\;12{\mu}g$).

  • PDF

Phytochemical analysis of Panax species: a review

  • Yang, Yuangui;Ju, Zhengcai;Yang, Yingbo;Zhang, Yanhai;Yang, Li;Wang, Zhengtao
    • Journal of Ginseng Research
    • /
    • v.45 no.1
    • /
    • pp.1-21
    • /
    • 2021
  • Panax species have gained numerous attentions because of their various biological effects on cardiovascular, kidney, reproductive diseases known for a long time. Recently, advanced analytical methods including thin layer chromatography, high-performance thin layer chromatography, gas chromatography, high-performance liquid chromatography, ultra-high performance liquid chromatography with tandem ultraviolet, diode array detector, evaporative light scattering detector, and mass detector, two-dimensional high-performance liquid chromatography, high speed counter-current chromatography, high speed centrifugal partition chromatography, micellar electrokinetic chromatography, high-performance anion-exchange chromatography, ambient ionization mass spectrometry, molecularly imprinted polymer, enzyme immunoassay, 1H-NMR, and infrared spectroscopy have been used to identify and evaluate chemical constituents in Panax species. Moreover, Soxhlet extraction, heat reflux extraction, ultrasonic extraction, solid phase extraction, microwave-assisted extraction, pressurized liquid extraction, enzyme-assisted extraction, acceleration solvent extraction, matrix solid phase dispersion extraction, and pulsed electric field are discussed. In this review, a total of 219 articles published from 1980 to 2018 are investigated. Panax species including P. notoginseng, P. quinquefolius, sand P. ginseng in the raw and processed forms from different parts, geographical origins, and growing times are studied. Furthermore, the potential biomarkers are screened through the previous articles. It is expected that the review can provide a fundamental for further studies.

Effects of 2-Deoxy-D-Glucose on Metabolic Status, Proliferative Capacity and Growth Rate of FSall Tumor: Observations made by In Vivo $^{31}P$-Nuclear Magnetic Resonance Spectroscopy and Flow Cytometry (2-DDG가 FSa II 종양의 성장속도와 증식 능력, 신진대사에 미치는 영향 ; $^{31}P$-자기공명 분광기와 유세포 분석기를 이용한 연구)

  • Chang Hyesook;Choi Eun Kyung;Cho Jeong Gill;Lim Tee-Hwon;Lee Tae-Keun;Yi Yun;Cho Young Joo;Kim Gon Sup
    • Radiation Oncology Journal
    • /
    • v.9 no.1
    • /
    • pp.1-6
    • /
    • 1991
  • The effect of 2-deoxy-d-glucose (2-DDG) on $C_3H$ mouse fibrosarcoma(FSall) was studied. Metabolic status, especially for energy metabolism, was studied using in vivo $^{31}P$-MRS, proliferative capacity was observed on flow cytometry(FC) and growth rate was measured after transplantation of $10^6$ viable tumor cells in the dorsum of foot of $C_3Hf/Sed$ mice. One gram of 2-DDG Per kg of body weight was injected intraperitoneally on 12th day of implantation. Average tumor size on 12th day of implantion was $250mm^3$. Growth rate of Fsall tumor was measured by tumor doubling time and slope on semilog plot. After 2-DDG injection, growth rate slowed down. Tumor doubling time between tumor age 5-12 days was 0.84 days with slope 0.828 and tumor doubling time between tumor age 13-28 days was 3.2 days with slope 0.218 in control group. After 2-DDG injection, tumor doubling time was elongated to 5.1 days with slope 0.136. The effect of 2-DDG studied in vivo $^{31}P$-MRS suggested that the increase of phosphomonoester (PME) and inorganic phosphate (Pi) by increasing size of tumor, slowed down after 2-DDG injection. Flow cytometry showed significantly increased S-phase and $G_2+M$ phase fraction suggesting increased proliferative capacity of tumor cells in the presence of 2-DDG. Authors observed an interesting effect of 2-DDG on FSall tumor and attempt to utilize as an adjunct for radiotherapy.

  • PDF

On the Composites of poly(ethylene 2,6-naphthalate) with a Thermotropic Block Copolyester(I) (열방성 블록 코폴리에스테르와 poly(ethylene 2,6-naphthalate)의 복합재료 연구(I))

  • Choi, Jae Kon
    • Applied Chemistry for Engineering
    • /
    • v.8 no.3
    • /
    • pp.454-462
    • /
    • 1997
  • Thermotropic block copolyester(TLCP-b-PBN) based on poly(tetramethylene 2,6-(naphthaloyldioxy)dibenzoates)(TLCP) and poly(butylene 2,6-naphthalate)(PBN) was synthesized by solution polycondensation and melt-blended with poly(ethylene 2,6-naphthalate)(PEN) for in-situ composites. The TLCP domains showed nematic behavior in melt. The composition of block copolymer was determined from $^1H-NMR$ spectroscopy. The DSC thermogram of block copolymer revealed the presence of two major melting transitions, corresponding to the separete melting of PBN and TLCP domains. The glass transition temperature(Tg) of the PEN in the blends decreased with increasing the content of TLCP-b-PBN and the TLCP-b-PBN acted as a nucleating agent for the matrix polymers. In the 20% TLCP-b-PBN blend, well oriented TLCP fibriles were observed at temperature above the melting point of the PEN by optical microscopy. By scanning electron micrographs of cryogenically fractured surfaces of extruded blends, the TLCp domains were found to be finely and uniformely dispersed in 0.15 to $0.2{\mu}m$ size. Interfacial adhesion between the TLCP and matrix polymer was seemed to be good. Under certain condition TLCP formed a fiver structure in the PEN matrix, with thin oriented TLCP fibril in the skin region and spherical TLCP domains in the core.

  • PDF

Nuclear Imaging Evaluation of Galactosylation of Chitosan (핵의학 영상을 이용한 chitosan의 galactosylation 효과에 대한 평가)

  • Jeong, Hwan-Jeong;Kim, Eun-Mi;Park, In-Kyu;Cho, Chong-Su;Kim, Chang-Guhn;Bom, Hee-Seung
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.3
    • /
    • pp.253-258
    • /
    • 2004
  • Purpose: Chitosan has been studied as a non-viral gene delivery vector, drug delivery carrier, metal chelator, food additive, and radiopharmaceutical, among other things. Recently, galactose-graft chitosan was studied as a non-viral gene and drug delivery vector to target hepatocytes. The aim of this study was to investigate the usefulness of nuclear imaging for in vivo evaluation of targeting the hepatocyte by galactose grafting. Methods and Materials: Galactosyl methylated chitosan (GMC) was produced by methylation to lactobionic acid coupled chitosan. Cytotoxicity of $^{99m}Tc$-GMC was determined by MTT assay. Rabbits were injected via their auricular vein with $^{99m}Tc$-GMC and $^{99m}Tc$-methylated chitosan (MC), the latter of which does not contain a galactose group, and images were acquired with a gamma camera equipped with a parallel hole collimator. The composition of the galactose group in galactosylated chitosan (GC), as well as the tri-, di-, or mono-methylation of GMC, was confirmed by NMR spectroscopy. Results: The results of MTT assay indicated that $^{99m}Tc$-GMC was non-toxic. $^{99m}Tc$-GMC specifically accumulated in the liver within 10 minutes of injection and maintained high hepatic uptake. In contrast, $^{99m}Tc$-MC showed faint liver uptake. $^{99m}Tc$-GMC scintigraphy of rabbits showed that the galactose ligand principally targeted the liver while the chitosan functionalities led to excretion through the urinary system. Conclusion: Bioconjugation with a specific ligand endows some degree of targetability to an administered molecule or drug, as in the case of galactose for hepatocyte in vivo, and evaluating said targetabililty is a clear example of the great benefit proffered by nuclear imaging.