Nuclear Imaging Evaluation of Galactosylation of Chitosan

핵의학 영상을 이용한 chitosan의 galactosylation 효과에 대한 평가

  • Jeong, Hwan-Jeong (Department of Nuclear Medicine, Wonkwang University School of Medicine) ;
  • Kim, Eun-Mi (Department of Nuclear Medicine, Wonkwang University School of Medicine) ;
  • Park, In-Kyu (School of Agricultural Biotechnology, Seoul National University) ;
  • Cho, Chong-Su (School of Agricultural Biotechnology, Seoul National University) ;
  • Kim, Chang-Guhn (Department of Nuclear Medicine, Wonkwang University School of Medicine) ;
  • Bom, Hee-Seung (Department of Nuclear Medicine, Chonnam National University School of Medicine)
  • 정환정 (원광대학교 의과대학 핵의학교실) ;
  • 김은미 (원광대학교 의과대학 핵의학교실) ;
  • 박인규 (서울대학교 농생명공학부) ;
  • 조종수 (서울대학교 농생명공학부) ;
  • 김창근 (원광대학교 의과대학 핵의학교실) ;
  • 범희승 (전남대학교 의과대학 핵의학교실)
  • Published : 2004.06.30

Abstract

Purpose: Chitosan has been studied as a non-viral gene delivery vector, drug delivery carrier, metal chelator, food additive, and radiopharmaceutical, among other things. Recently, galactose-graft chitosan was studied as a non-viral gene and drug delivery vector to target hepatocytes. The aim of this study was to investigate the usefulness of nuclear imaging for in vivo evaluation of targeting the hepatocyte by galactose grafting. Methods and Materials: Galactosyl methylated chitosan (GMC) was produced by methylation to lactobionic acid coupled chitosan. Cytotoxicity of $^{99m}Tc$-GMC was determined by MTT assay. Rabbits were injected via their auricular vein with $^{99m}Tc$-GMC and $^{99m}Tc$-methylated chitosan (MC), the latter of which does not contain a galactose group, and images were acquired with a gamma camera equipped with a parallel hole collimator. The composition of the galactose group in galactosylated chitosan (GC), as well as the tri-, di-, or mono-methylation of GMC, was confirmed by NMR spectroscopy. Results: The results of MTT assay indicated that $^{99m}Tc$-GMC was non-toxic. $^{99m}Tc$-GMC specifically accumulated in the liver within 10 minutes of injection and maintained high hepatic uptake. In contrast, $^{99m}Tc$-MC showed faint liver uptake. $^{99m}Tc$-GMC scintigraphy of rabbits showed that the galactose ligand principally targeted the liver while the chitosan functionalities led to excretion through the urinary system. Conclusion: Bioconjugation with a specific ligand endows some degree of targetability to an administered molecule or drug, as in the case of galactose for hepatocyte in vivo, and evaluating said targetabililty is a clear example of the great benefit proffered by nuclear imaging.

목적: 약물이나 유전자 전달에 이용되는 생체적합성이 높은 키토산의 간세포 지향성을 위해서 갈락토스를 수식하는 방법이 널리 이용되어지고 있다. 이번 연구에서는 갈락토스 수식 키토산의 간세포지향성 획득을 평가하는데 있어서 핵의학 영상법의 유용성에 대해 알아보고자 하였다. 대상 및 방법: 키토산에 NHS와 EDC를 이용하여 30 mol%의 lactobionic acid를 결합시켜 갈락토스 수식 키토산을 제조하였다. 얻어진 갈락토스 수식 키토산을 투석 시킨 후 동결 건조하여 얻어 낸 다음 키토산의 기본구조인 glucoseamine에 methyl기를 첨가시키는 반응을 하여 최종화합물을 합성하였다. GMC의 세포내 독성은 MTT assay를 통하여 확인하였다. 제조된 GMC에 $SnCl_2{\cdot}2H_2O$를 이용하여 $^{99m}Tc$을 표지하였다. 표지 후 안정성은 아세톤과 생리식염수를 이용하여 1시간까지 확인하였다. $^{99m}Tc$-GMC와 $^{99m}Tc$-MC 55.5 MBq (1.5 mCi)를 토끼의 외이정맥으로 주사 후, 감마카메라를 이용하여 10분, 30분, 60분, 90분 간격으로 전면 영상을 얻었다. 결과: 키토산에 lactobionic acid 30 mol%를 반응시켜 7.4 mol%의 galactose group이 키토산에 결합한 것을 확인하였다. 갈락토스 수식 키토산을 메틸화한 결과는 tri, di, mono가 각각 8.8%, 46%, 35.2%인 것을 확인하였다. MTT assay결과를 통해 GMC의 세포에 미치는 독성은 거의 없는 것을 확인할 수 있었다. 표지 효율은 메틸화시키지 않은 $^{99m}Tc$-GC가 아세톤과 생리식염수에서 각각 88%, 72%를 보인 반면에 $^{99m}Tc$-GMC는 96%정도를 보여 보다 높은 표지효율을 가지는 것을 확인하였다. $^{99m}Tc$-MC를 주사후 얻은 토끼 영상에서 키토산은 일반적으로 대부분 신장을 통해 배출되며, 간과 비장, 골격계에는 매우 적은 분포를 보이는데 비해. 갈락토스가 수식된 $^{99m}Tc$-GMC에서는 분포에 변화가 생겨 간, 신장, 그리고 방광에서 높은 방사능이 관찰되는 소견을 보였다. 결론: 핵의학 영상법은 갈락토스 리간드 수식 키토산의 간세포 지향성 여부를 평가하기 위한 생체내 평가법으로 이용될 수 있을 것으로 사료되었다.

Keywords

References

  1. Skjak-br$\ae$k. G, Anthonsen. T, Sandford. P. Chitin and Chitosan. In: Sandford. P, eds. Chitosan: commercial uses and potential applications. LONDON; Elsevier Science Publishiers Ltd. 1989. p.51-69
  2. Koping-Hoggard M, Tubulekas I, Guan H, Edwards K, Nilsson M, Varum KM, et al. Chitosan as a nonviral gene delivery system. Structure-property relationships and characteristics compared with polyethylenimine in vitro and after lung administration in vivo. Gene Ther 2001;8:1108-21
  3. Chung TW, Yang J, Akaike T, Cho KY, Nah JW, Kim SI, et al. Preparation of alginate/galactosylated chitosan scaffold for hepatocyte attachment. Biomaterials 2002 ;23:2827-34 https://doi.org/10.1016/S0142-9612(01)00399-4
  4. Felt O, Buri P, Gurny R. Chitosan: a unique polysaccharide for drug delivery. Drug Dev Ind Pharm 1998 ;24:979-93 https://doi.org/10.3109/03639049809089942
  5. Muzzarelli RAA, Rocchetti R. Enhanced capacity of chitosan for transition-metal ions in sulphate-sulphuric acid solutions. Talanta 1974;21:1137-43 https://doi.org/10.1016/0039-9140(74)80097-4
  6. Rhazi M, Desbrieres J, Tolaimate A, Rinaudo M, Vottero P, Alagui A. Contribution to the study of the complexation of copper by chitosan and oligomer. Polymer 2002;43:1267-76 https://doi.org/10.1016/S0032-3861(01)00685-1
  7. Suzuki YS, Momose Y, Higashi N, Shigematsu A, Park KB, Kim YM, et al. Biodistribution and kinetics of holmium-166-chitosan complex (DW-166HC) in rats and mice. J Nucl Med 1998;39: 2161-6
  8. Sasaki N, Shiomi S, Iwata Y, Nishiguchi S, Kuroki T, Kawabe J, et al. Clinical usefulness of scintigraphy with $[^{99m}Tc]$-galactosylhuman serum albumin for prognosis of cirrhosis of the liver. J Nucl Med 1999;40:1652-6
  9. Saha GB. Fundamentals of nuclear pharmacy. 4th ed. NEW YORK: Springer-Verlag; 1998. p.98-9
  10. Lee J. Quantitative Evaluation of Liver Function with Hepatic Receptor Scintigraphy using Tc-99m Galactosylated Serum Albumin (GSA). Korean J Nucl Med 1998;32:305-13
  11. Park IK, Kim TH, Park YH, Shin BA, Choi ES, Chowdhury EH, et al. Galactosylated chitosan-graft-poly(ethylene glycol) as hepatocyte-targeting DNA carrier. J Control Release 2001;76:349–62
  12. Zanta MA, Boussif O, Adib A, Behr JP. In vivo gene delivery to hepatocytes with galactosylated polyethylenimine. Bioconjug Chem 1997;8:841-4
  13. Rensen PC, Herijgers N, Netscher MH, Meskers SC, van Eck M, van Berkel TJ. Particle size determines the specificity of apolipoprotein E-containing triglyceride-rich emulsions for the LDL receptors versus hepatic remnant receptor in vivo. J Lipid Res 1997;38:70-1084
  14. Choi YH, Liu F, Park JS, Kim SW. Lactose-poly-(ethylene glycol)- grafted poly-L-lysine as hepatoma cell targeted gene carrier. Bioconjug Chem 1998;9:708-18 https://doi.org/10.1021/bc980017v
  15. Jeong SY, Lee JT, Seo MR, Yoo JA, Bae JH, Ahn BC, et al. Evaluation of liver function using $^{99m}Tc$-lactosylated serum albumin liver scintigraphy in rat with acute hepatic injury induced by dimethylnitrosamine. Korean J Nucl Med 2003;37:418-27
  16. Kudo M, Ikekubo K, Todo A, Mimura J, Okabe Y, Kashida H, et al. Hepatic receptor imaging with Tc-99m GSA: estimates of liver function in acute liver disease. Nippon Shokakibyo Gakkai Zasshi 1992;89:616-26
  17. Siecal AB, Thanou M, Kortze AF, Verhoel JC, Brussee J, Junginger HE. Preparation and NMR characterization of highly substituted N-trimethyl chitosan chloride. Carbohydrate Polymers 1998;36:157-65 https://doi.org/10.1016/S0144-8617(98)00009-5
  18. Arano Y. Delivery of diagnostic agents for gamma-imaging. Adv Drug Deliv Rev 1999;37:103-20 https://doi.org/10.1016/S0169-409X(98)00102-1
  19. Domingo JL. Developmental toxicity of metal chelating agents. Reprod Toxicol 1998;12:499-510.20. Duncan R, Pratten MK, Lloyd JB. Mechanism of polycation stimulation of pinocytosis. Biochim Biophys Acta 1979;587:463-75
  20. Leonetti JP, Degols G, Lebleu B. Biological activity of oligonucleotidepoly( L-lysine) conjugates: mechanism of cell uptake. Bioconjug Chem 1990;1:149-53 https://doi.org/10.1021/bc00002a010
  21. Onishi H, Machida Y. Biodegradation and distribution of watersoluble chitosan in mice. Biomaterials 1999;20:175-82 https://doi.org/10.1016/S0142-9612(98)00159-8