• Title/Summary/Keyword: $^{60}Co$ 감마선

Search Result 195, Processing Time 0.029 seconds

Expression profile of defense-related genes in response to gamma radiation stress (방사선 스트레스 반응 방어 유전자의 탐색 및 발현 분석)

  • Park, Nuri;Ha, Hye-Jeong;Subburaj, Saminathan;Choi, Seo-Hee;Jeon, Yongsam;Jin, Yong-Tae;Tu, Luhua;Kumari, Shipra;Lee, Geung-Joo
    • Journal of Plant Biotechnology
    • /
    • v.43 no.3
    • /
    • pp.359-366
    • /
    • 2016
  • Tradescantia is a perennial plant in the family of Commelinaceae. It is known to be sensitive to radiation. In this study, Tradescantia BNL 4430 was irradiated with gamma radiation at doses of 50 to 1,000 mGy in a phytotron equipped with a $^{60}Co$ radiation source at Korea Atomic Energy Research Institute, Korea. At 13 days after irradiation, we extracted RNA from irradiated floral tissues for RNA-seq. Transcriptome assembly produced a total of 77, 326 unique transcripts. In plantlets exposed to 50, 250, 500, and 1000 mGy, the numbers of up-regulated genes with more than 2-fold of expression compared that in the control were 116, 222, 246, and 308, respectively. Most of the up-regulated genes induced by 50 mGy were heat shock proteins (HSPs) such as HSP 70, indicating that protein misfolding, aggregation, and translocation might have occurred during radiation stress. Similarly, highly up-regulated transcripts of the IQ-domain 6 were induced by 250 mGy, KAR-UP oxidoreductase 1 was induced by 500 mGy, and zinc transporter 1 precursor was induced by 1000 mGy. Reverse transcriptase (RT) PCR and quantitative real time PCR (qRT-PCR) further validated the increased mRNA expression levels of selected genes, consistent with DEG analysis results. However, 2.3 to 97- fold higher expression activities were induced by different doses of radiation based on qRT-PCR results. Results on the transcriptome of Tradescantia in response to radiation might provide unique identifiers to develop in situ monitoring kit for measuring radiation exposure around radiation facilities.

A Study of Optimized MRI Parameters for Polymer Gel Dosimetry (중합체 겔 선량측정법을 위한 최적의 자기공명영상 변수에 관한 연구)

  • Cho, Sam-Ju;Chung, Young-Lip;Lee, Sang-Hoon;Huh, Hyun-Do;Choi, Jin-Ho;Park, Sung-Ill;Shim, Su-Jung;Kwon, Soo-Il
    • Progress in Medical Physics
    • /
    • v.23 no.2
    • /
    • pp.71-80
    • /
    • 2012
  • In order to verify exact dose distributions in the state-of-the-art radiation techniques, a newly designed three-dimensional dosimeter and technique has been took strongly into consideration. The main purpose of our study is to verify the optimized parameters of polymer gel as a real volumetric dosimeter in terms of the various study of MRI. We prepared a gel dosimeter by combing 8% of gelatin, 8% of MAA, and 10 mM of THPC. We used a Co-60 gamma-ray teletherapy unit and delivered doses of 0, 2, 4, 6, 8, 10, 12, and 14 Gy to each polymer gel with a solid phantom. We used a fast spin-echo pulse to acquire the characterized T2 time of MRI. The signal noise ratio (SNR) of the head & neck coil was a relatively lower sensitivity than the body coil; therefore the dose uncertainty of head & neck coil would be lower than body coil's. But the dose uncertainty and resolution of the head & neck coil were superior to the body coil in this study. The TR time between 1,500 ms and 2,000 ms showed no significant difference in the dose resolution, but TR of 1,500 ms showed less dose uncertainty. For the slice thickness of 2.5 mm, less dose uncertainty of TE times was at 4 Gy, as well, it was the lowest result over 4 Gy at TE of 12 ms. The dose uncertainty was not critical up to 6 Gy, but the best dose resolution was obtained at 20 ms up to 8 Gy. The dose resolution shows the lowest value was over 20 ms and was an excellent result in the number of excitation (NEX) of three. The NEX of two was the highest dose resolution. We concluded that the better result of slice thickness versus NEX was related to the NEX increment and thin slice thickness.

Effect on Identification of Irradiated Wheat and Soybean by the Full-overlapped Gravitational Field Energy(FGFE) Treatment (중첩중력에너지가 방사선 조사된 밀과 대두의 판별특성에 미치는 영향)

  • Oh, Sang-Lyong;Ahn, Jae-Jun;Kwon, Joong-Ho;Kim, Hak-Je
    • Food Science and Preservation
    • /
    • v.18 no.3
    • /
    • pp.294-301
    • /
    • 2011
  • The aim of this study was to investigate the changes in identification markers of irradiated foods after treatment of the full-overlapped gravitational field energy (FGFE). Wheat and soybean samples were irradiated at 0-5 kGy of Co-60 gamma energy, and analyzed for photostimulated and thermo luminescence characteristics (PSL and TL) and sprouting rate at 0 and 6th month after FGFE treatment. As a screening method for irradiated samples, PSL photon counts (PCs) for the non-irradiated samples appeared negative (<700 PCs), while irradiated samples gave positive (>5,000 PCs). But FGFE-treated irradiated samples appeared intermediate (700-5,000 PCs), showing decreased PCs during storage. The TL analysis on irradiated samples exhibited glow curve peaks in range of $150-200^{\circ}C$ and TL ratio ($TL_1/TL_2$) was also >0.1. Therefore, identification of irradiated samples was possible using thermoluminescence. But the glow curve range of FGFE-treated irradiated samples shifted from $150-200^{\circ}C$ to $180-230^{\circ}C$ and TL intensity was decreased 37-60% resulting from FGFE treatment. After 6 months of storage, all the samples showed a decrease in TL intensity, but identification was still possible. The sprouting rate of irradiated samples decreased by about 72%, whereas that of FGFE-treated irradiated samples showed by about 85%, as compared to non-irradiated samples. More detailed study is required to investigate sprouting phenomena for FGFE-treated samples.

Detection Characteristics of Gamma-Irradiated Seeds by using PSL, TL, ESR and GC/MS (PSL, TL, ESR 및 GC/MS 분석을 통한 감마선 조사된 유지종실류의 검지 특성 연구)

  • Kim, Kyu-Heon;Son, Jin-Hyok;Kang, Yoon-Jung;Park, Hye-Young;Kwak, Ji-Young;Lee, Jae-Hwang;Park, Yong-Chjun;Jo, Tae-Yong;Kim, Jae-I;Lee, Hwa-Jung;Lee, Sang-Jae;Han, Sang-Bae
    • Journal of Food Hygiene and Safety
    • /
    • v.28 no.2
    • /
    • pp.130-137
    • /
    • 2013
  • In this study, we investigated the applicability of the photostimulated luminescence (PSL), thermoluminescence (TL), electron spin resonance (ESR) and gas chromatography/mass spectrometry (GC/MS) methods for 5 seeds which are not allowed to be irradiated in Korea. All 5 seeds including evening primrose seed, safflower seed, rape seed, sunflower seed and flax seed were analyzed. Samples were irradiated at 1~10 kGy using a $^{60}Co$ gamma-ray irradiator. In PSL study, the photon counts of all the unirradiated samples showed negative (lower than 700). The photon counts of irradiated (1, 5, 10 kGy) samples showed positive (higher than 5,000). In TL analysis, results showed that it is possible to apply TL method to all foods containing minerals. In ESR measurements, the ESR signal (single-line) intensity of irradiated foods was higher than non-irradiated foods. The hydrocarbons 1,7-hexadecadiene ($C_{16:2}$) and 8-heptadecene ($C_{17:1}$) from oleic acid were detected only in the irradiated samples before and after the treatment at doses ${\geq}$ 1 kGy, but they were not detected in non-irradiated samples before and after treatment. These two hydrocarbons could be used as markers to identify irradiated safflower seed, rape seed, Sunflower seed and flax seed. And then, the hydrocarbons 1,7,10-hexadecatriene ($C_{16:3}$) and 6,9-heptadecadiene ($C_{17:2}$) from linoleic acid were detected in the evening primrose seed, safflower seed and sunflower seed. According to the results, PSL, TL and GC/MS methods were successfully applied to detect the irradiated foods. It is concluded that PSL, TL and GC/MS methods are suitable for detection of irradiated samples and a combined method is recommendable for enhancing the reliability of detection results.

Batch Scale Storage of Sprouting Foods by Irradiation Combined with Natural Low Temperature - III. Storage of Onions - (방사선조사(放射線照射)와 자연저온(自然低溫)에 의한 발아식품(發芽食品)의 Batch Scale 저장(貯藏)에 관한 연구(硏究) - 제3보(第三報) 양파의 저장(貯藏) -)

  • Cho, Han-Ok;Kwon, Joong-Ho;Byun, Myung-Woo;Yang, Ho-Sook
    • Applied Biological Chemistry
    • /
    • v.26 no.2
    • /
    • pp.82-89
    • /
    • 1983
  • In order to develop a commercial storage method of onions by irradiation combined with natural low temperature, two local varieties of onions, precocious species and late ripening, were stored at natural low temperature storage room ($450{\times}650{\times}250cmH.$; year-round temperature change, $2{\sim}17^{\circ}C$; R.H., $80{\sim}85%$) on batch scale following irradiation with optimum dose level. Precocious and late varieties were all sprouted after five to seven months storage, whereas $10{\sim}15$ Krad irradiated precocious variety was $2{\sim}4%$ sprouted after nine months storage, but sprouting was completly inhibited at the same dose for late variety. The extent of loss due to rot attack after ten months storage were $23{\sim}49%$ in both control and irradiated group of precocious variety but those of late variety were only $4{\sim}10%$. The weight loss of irradiated precocious variety after ten months storage was $13{\sim}16$, while that of late variety was $5.3{\sim}5.9%$ after nine months storage. The moisture content, during whole storage period, of two varieties were $90{\sim}93$ with negligible changes. The total sugar content differed little with varieties and doses immediatly after irradiation, but decreased by the elapse of storage period. 33.6% of its content was decreased in control and 12.5% in irradiated group but $20{\sim}26$ decreased in both control and irradiated group of late variety after nine months storage. No appreciable change was observed immediately after irradiation irrespective of variety and dose, but decreased slightly with storage. Ascorbic acid content of precocious variety was increased slightly with dose immediately after irradiation, but those of late variety decreased slightly. Ascorbic acid content were generally decreased during whole storage period. An economical preservation method of onions appliable to late variety, would be to irradiate onion bulbs at dost range of $10{\sim}15$ Krad followed by storage at natural low temperature storage room.

  • PDF