• Title/Summary/Keyword: $^{222}Rn$

Search Result 103, Processing Time 0.028 seconds

Radon Concentration at N-Kindergarten in G-City (G광역시 N유치원의 라돈 농도)

  • Park, Yun;Kim, Wonjun
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.6
    • /
    • pp.421-424
    • /
    • 2015
  • In this study, To subject the constructed at N-kindergarten in G-city, the position is closed window and opened window was measured using a measuring instrument for radon. The measured results indicate that the measurement was carried out in concentrations of radon gas measured at N-kindergarten is low than United States in the radon concentration in air public 4pCi called radon gas baseline maximum allowable concentrations. As a result, radon exposure is not a problem, but when the accumulation radon gas in the lungs, get damaged same lung cancer. Be defensive of kindergarten windows open for ventilation and dust removal be possible to reduce the exposure.

The Correlation between Radon (Rn222) and Particulate Matters (PM10, PM2.5, PM1.0) in Subway Tunnel in Seoul.

  • Versoza, Michael;Park, Duckshin
    • Particle and aerosol research
    • /
    • v.13 no.2
    • /
    • pp.87-95
    • /
    • 2017
  • Radon ($Rn^{222}$) is a radioactive gas and is found at high concentrations underground. Investigations were done in many years specifically on public transportations such as in the subway stations, concourses and platforms for these are located underground areas. This study correlates the $Rn^{222}$ concentrations with the Particulate Matter (PM) concentration for the gas could be attached or trapped inside these particles. It was done on the opening subway tunnel of Miasageori Station going to Mia Station (Line 4) last August 2016. Based on the result, the $Rn^{222}$ were more influenced on the mass ratio (%) of PM present in the air instead of its mass concentration (${\mu}g/m^3$). As the $PM_{10}$ mass ratio increases ($42.32{\pm}1.03%$) during morning rush-hours, radon starts to increase up to $0.97{\pm}0.03pCi/L$. But during the afternoon $Rn^{222}$ concentrations decreased while the composition were stable at $22.96{\pm}3.0%$, $39.04{\pm}0.6%$ and $38.01{\pm}0.3%$ in $PM_1$, $PM_{2.5}$ and $PM_{10}$ respectively. It was then assumed that it could be the composition of the morning hours of the station were influencing the concentration of the radon.

Evaluation of Radioactive Stack Air Effluents from the Advanced Fuel Science Building at KAERI (한국원자력연구원 새빛연료과학동 굴뚝방출 방사능 평가)

  • Chang, S.Y.;Kim, B.H.
    • Journal of Radiation Protection and Research
    • /
    • v.33 no.3
    • /
    • pp.121-126
    • /
    • 2008
  • Radioactivities of the stack air effluents from the Advance Fuel Science Building (AFSB) at KAERI have been investigated and evaluated. In this AFSB, nuclear fuels for the HANARO research reactor have been fabricated and the advanced nuclear fuels have been studied. A stack air monitoring system has been continuously operating to monitor the stack air effluents from the facility to protect the environment. As the results of the periodical radioactivity measurement and both the gamma and alpha spectrometry for the millipore filters taken from the stack air monitor from January until March 2008, a trace amount of primordial $^{40}K$ and the short-lived decay products of natural borne $^{222}Rn$ and $^{220}Rn$ have been detected. However, the radioactivities have rapidly decayed to the level below the Minimum Detectable Activity (MDA) of the counting system. Therefore, it was evaluated that no uranium isotopes have been released to the atmosphere from the stack of the AFSB at KAERI.

Nuclear Physics Methods for Determination of Radon in Water

  • Oyunchimeg, Ts.;Norov, N.;Khuukhenkhuu, G.
    • Progress in Medical Physics
    • /
    • v.13 no.1
    • /
    • pp.51-53
    • /
    • 2002
  • The results of the measured specific activities of Rn-222 in sewerage and drinking water of Ulaanbaatar City, Mongolia using the HP-Ge gamma-spectrometer, solid state nuclear track detector and liquid scintillator, are compared. The specific radioactivity for the Rn-222 in water of Ulaanbaatar City ranged 10-250 Bk/l, with an average of 110 Bk/l.

  • PDF

The Importance of groundwater discharge for environmental assessment of Chinhae Bay (진해만 환경평가를 위한 해저지하수의 중요성)

  • Chung Chong Soo;Hong Gi Hoon;Kim Suk Hyun;Kim Young Il;Moon Duk Soo;Park Jun Kun;Choi Jun Sun;Yang Dong Beom
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.3 no.4
    • /
    • pp.23-36
    • /
    • 2000
  • Bottom sea waters in eight stations including from inner bay to outer bay to understand the importance of the submarine groundwater discharge for the environmental assessment of Chinhae Bay was collected in August 1999 and January 2000. Generally, /sup 222/Rn is very useful tracer to assess the submarine groundwater discharge because it is 2-4 orders of magnitude more concentrated in groundwater compared to surface water. The /sup 222/Rn activities ranged between about 33 to 182 dpm/100kg within the bay. Higher activities more than 100 dpm/100kg were found at the inner bay. The /sup 226/Ra activities, its parent, however, were little different between stations. /sup 222/Rn activities at the same station varied with season. It suggests that the major source of /sup 222/Rn is not from the bottom sediment, but from the change of submarine groundwater discharge by precipitation. The contents of Cl/sup -/ and SO/sub 4//sup 2-/ in the groundwater of Wonjeon-ri were very high as 1,312 and 369 ppm, respectively, indicating that this groundwater along the Chinhae coast was affected by seawater. Therefore, the submarine groundwater in the inner Bay may discharge to the overlying water. It indicates that these submarine groundwater discharges may play an important role as another important source of nutrients in the Chinhae Bay, because groundwater around the Chinhae Bay showed high concentration of dissolved inorganic nutrients (average , nitrate>174 μM, silicate>262 μM). Therefore, further studies are required to assess the contribution by the submarine groundwater discharge in the biogeochemical processes of the Chinhae Bay.

  • PDF

Occurrence of Natural Radioactive Materials in Borehole Groundwater and Rock Core in the Icheon Area (이천지역 시추공 지하수와 시추코어내 자연방사성물질 산출 특성)

  • Jeong, Chan-Ho;Kim, Dong-Wook;Kim, Moon-Su;Lee, Young-Joon;Kim, Tae-Seung;Han, Jin-Seok;Jo, Byung-Uk
    • The Journal of Engineering Geology
    • /
    • v.22 no.1
    • /
    • pp.95-111
    • /
    • 2012
  • This study investigated the relationship between the geochemical environment and the occurrence of natural radioactive materials (uranium and Rn-222) in borehole groundwater at an Icheon site. The drill core recovered from the study site consists mainly of biotite granite with basic dykes. The groundwater samples were collected at four different depths in the borehole using the double-packed system. The pH range of the groundwater was 6.5~8.6, and the chemical type was Ca-$HCO_3$. The ranges of uranium and Rn-222 concentrations in the groundwater were 8.81~1,101 ppb and 5,990~11,970 pCi/L, respectively, and concentrations varied greatly with depth and collection time. The ranges of uranium and thorium contents in drill core were 0.53~18.3 ppm and 6.66~17.5 ppm, respectively. Microscope observations and electron microprobe analyses revealed the presence of U and Th as substituted elements for major composition of monazite, ilmenite, and apatite within K-feldspar and biotite. Although the concentration of uranium and thorium in the drill core was not high, the groundwater contained a high level of natural radioactive materials. This finding indicates that physical factors, such as the degree of fracturing of an aquifer and the groundwater flow rate, have a greater influence on the dissolution of radioactive materials than does the geochemical condition of the groundwater and rock. The origin of Rn-222 can be determined indirectly, using an interrelationship diagram of noble gas isotopes ($^3He/^4He$ and $^4He/^{20}Ne$).

해외 동정

  • Korea Radioisotope Association
    • 동위원소뉴스
    • /
    • no.2 s.110
    • /
    • pp.12-14
    • /
    • 2006
  • PDF

Radon Removal Efficiency of Activated Carbon Filter from Coconut (코코넛 기반 활성탄 필터의 라돈 제거 효율)

  • Yun-Jin Ahn;Gi-Sub Kim;Tae-Hwan Kim;Sang-Rok Kim
    • Journal of radiological science and technology
    • /
    • v.46 no.2
    • /
    • pp.141-149
    • /
    • 2023
  • The Korea Institute of Radiological and Medical Sciences plans to produce 225Ac, a therapeutic radio-pharmaceutical for precision oncology, such as prostate cancer. Radon, a radioactive gas, is generated by radium, the target material for producing 225Ac. The radon concentration is expected to be about 2000 Bq·m-3. High-concentration radon-generating facilities must meet radioactive isotope emission standards by lowering the radon concentration. However, most existing studies concerning radon removal using activated carbon filters measured radon levels at concentrations lower than 1000 Bq·m-3. This study measured 222Rn removal of coconut-based activated carbon filter under a high radon concentration of about 2000 Bq·m-3. The 222Rn removal efficiency of activated carbon impregnated with triethylenediamine was also measured. As a result, the 222Rn removal amount of the activated carbon filter showed sufficient removal efficiency in a 222Rn concentration environment of about 2000 Bq·m-3. In addition, despite an expectation of low radon reduction efficiency of Triethylenediamine-impregnated activated carbon, it was difficult to confirm a significant difference in the results. Therefore, it is considered that activated carbon can be used as a radioisotope exhaust filter regardless of whether or not Triethylenediamine is impregnated. The results of this study are expected to be used as primary data when building an air purification system for radiation safety management in facilities with radon concentrations of about 2000 Bq·m-3.

지하수의 라듐/라돈 동시측정을 위한 백그라운드 감마선 제어

  • Lee Gil-Yong;Yun Yun-Yeol;Jo Su-Yeong;Kim Yong-Je
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.308-311
    • /
    • 2005
  • [ $^{222}Rn\;and\;^{226}Ra$ ] in groundwater were determined simultaneously using a gamma-spectroscopy. A nitrogen flushing equipment has been used for elimination and stabilization of high and unstable background activity due to the radon and its progenies in counting shield and room. The aim of present work was to control the background activity for simultaneous measurement of radium$(^{226}Ra)$ and radon$(^{222}Rn)$ in groundwater using a gamma-spectrometry. Background activity was about 1.0dps and the standard deviation was about 50%, The background activity could be minimized using nitrogen flushing equipment in the range of 0.1 to 0.5 and the RSD was about 5% at the experimental condition. The detection limit of $^{222}Rn\;and\;^{226}Ra$ in groundwater was 0.5dps/L in the background control method. In most groundwater used in the work, radon activity was more than the detection limit. However, radium activity in some groundwater was less than the detection limit. If the low level radium in groundwater must be measured, preconcentration process such as concentration should be performed before measuring the groundwater.

  • PDF