• Title/Summary/Keyword: $^{18}FDG$ PET-CT

Search Result 351, Processing Time 0.029 seconds

Evaluation of Standardized Uptake Value and Metabolic Tumor Volume between Reconstructed data and Re-sliced data in PET Study (PET 검사 시 Reconstructed data와 Re-sliced data의 표준섭취계수와 Metabolic Tumor Volume의 비교 평가)

  • Do, Yong Ho;Lee, Hong Jae;Kim, Jin Eui
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.20 no.2
    • /
    • pp.3-8
    • /
    • 2016
  • Purpose SUV is one of the parameters that assist diagnosis in origin, metastasis and staging of cancer. Specially, it is important to compare SUV before and after chemo or radiation therapy to find out effectiveness of treatment. Storing PET data which has no quantitative change is needed for SUV comparison. However, there is a possibility to loss the data in external hard drive or MINIpacs that are managed by department of nuclear medicine. The aim of this study is to evaluate SUV and metabolic tumor volume (MTV) among reconstructed data (R-D) in workstation, R-D and re-sliced data (S-D) in PACS. Materials and Methods Data of 20 patients (aged $60.5{\pm}8.3y$) underwent $^{18}F-FDG$ PET (Biograph truepoint 40, mCT 40, mCT 64, mMR, Siemens) study were analysed. $SUV_{max}$, $SUV_{peak}$ and MTV were measured in liver, aorta and tumor after sending R-D in workstation, R-D and S-D in PACS to syngo.via software. Results R-D of workstation and PACS showed the same value as mean $SUV_{max}$ in liver, aorta and tumor were $2.95{\pm}0.59$, $2.35{\pm}0.61$, $10.36{\pm}6.15$ and $SUV_{peak}$ were $2.70{\pm}0.51$, $2.07{\pm}0.43$, $7.67{\pm}3.73$(p>0.05) respectively. Mean $SUV_{max}$ of S-D in PACS were decreased by 5.18%, 7.22%, 12.11% and $SUV_{peak}$ 2.61%, 3.63%, 10.07%(p<0.05). Correlation between R-D and S-D were $SUV_{max}$ 0.99, 0.96, 0.99 and $SUV_{peak}$ 0.99, 0.99, 0.99. And 2SD in balnd-altman analysis were $SUV_{max}$ 0.125, 0.290, 1.864 and $SUV_{peak}$ 0.053, 0.103, 0.826. MTV of R-D in workstation and PACS show the same value as $14.21{\pm}12.72cm^3$(p>0.05). MTV in PACS was decreased by 0.12% compared to R-D(p>0.05). Correlation and 2SD between R-D and S-D were 0.99 and 2.243. Conclusion $SUV_{max}$, $SUV_{peak}$, MTV showed the same value in both of R-D in workstation and PACS. However, there was statistically difference in $SUV_{max}$, $SUV_{peak}$ of S-D compare to R-D despite of high correlation. It is possible to analyse reliable pre and post SUV if storing R-D in main hospital PACS system.

  • PDF

Usefulness of Stomach Extension after Drinking Orange Juice in PET/CT Whole Body Scan (PET/CT 전신 영상에서 오렌지 주스(Orange Juice)를 이용한 위장 확장 영상의 유용성)

  • Cho, Seok-Won;Chung, Seok;Oh, Shin-Hyun;Park, Hoon-Hee;Kim, Jae-Sam;Lee, Chang-Ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.13 no.1
    • /
    • pp.86-92
    • /
    • 2009
  • Purpose: The PET/CT has a clear distinction on the lesion of the functional image by adding anatomical information. It also could reduce the examination time using CT data as the attenuation-correction. When the stomach was contracted from a fast, it could bring a misinterpretation of the cancer of the lesion with a presence of physiological $^{18}F$-FDG uptake in stomach and it occasionally would bring an additional scan to confirm. To complement this shortcoming, the method that the patients had water before the examination to extend the stomach had been attempted. However, a short excretion time of the stomach did not give sufficiently extended image of the stomach. Then the patients had additional water and had the examination again. Therefore, the noticed fact is that the stomach excretion time depends on calories, protein content, and the level of carbohydrate. In this study, we use an orange juice to evaluate the extension of the stomach and usefulness of it. Materials and Methods: PET/CT scan were obtained on total 150 of patient from February 2008 to October2008, There were 3 groups in this study and each group had 50 patients. First group drank nothing, Second group drank water and third group drank orange juice. The patients (man 25, female 25) not drinking are the age of 30~71 years old (average: 54), the patients (man: 25, female: 25) drinking water (400 cc) are the age of 28~71 years old (average: 54) and the patients (man: 25, female: 25) drinking orange juice (400 cc) are the age of 32~74 years old (average: 56). The patients were fasted in 6-8 hours before the test, the patients were not diabetic. $^{18}F$-FDG 370~555 MBq were injected intravenously. The patients were in stable position for 1 hour, than the image was obtained. The patients drank water and other patients drank orange juice before Whole body scan. The image scan started from mid-femur to skull base. The emission scan acquired for three minutes per bed and the images were reconstructed. Stomach extension analysis is measured from vertical and horizontal length. Results: Stomach Extension was described as the vertical length of the Non Drink Group was $1.20{\pm}0.50\;cm$, horizontal length was $1.4{\pm}0.53\;cm$, the vertical length of the Water Drink Group was $1.67{\pm}0.63\;cm$, horizontal length was $1.65{\pm}0.77\;cm$, the vertical length of Orange juice Drink Group was $3.48{\pm}0.77\;cm$, horizontal length was $3.66{\pm}0.77\;cm$ in coronal image. Stomach Extension was described the vertical length of the Non Drink Group was $2.03{\pm}0.62\;cm$, horizontal length was $1.69{\pm}0.68\;cm$, the vertical length of Water Drink Group was $5.34{\pm}1.62\;cm$, horizontal length was $2.45{\pm}0.72\;cm$, the vertical length of Orange juice Drink Group was $7.74{\pm}1.62\;cm$, horizontal length was $3.57{\pm}0.77\;cm$ in transverse image. The Stomach Extension has specific differences (p<0.001). The SUVs shows the Non Drink Group were measured as Liver $2.52{\pm}0.42$, Lung $0.51{\pm}0.14$, the Water Drink Group were measured as Liver $2.47{\pm}0.38$, Lung $0.50{\pm}0.14$, Orange juice Drink Group were measured as Liver $2.47{\pm}0.38$, Lung $0.50{\pm}0.14$. The SUVs did not have specific differences (p>0.759). Conclusions: There was not a large difference of SUV in three groups. When the patients drank Orange juice and water, the range extension of stomach was higher than without drinking nothing and it was possible to acquire fully extended images. Therefore, it will be possible that unnecessary additional stomach scans will be reduced by drinking orange juice before the examination so that the patients' claim from uncomfortable and long period of fast will be minimized.

  • PDF

Effectiveness Evalution of 18F-FDG Auto Dispenser (RIID: Radiopharmaceutical Intelligent Dispenser) (18F-FDG 자동분주기 사용에 따른 유용성 평가)

  • Yoo, Moon-Gon;Moon, Jae-Seung;Kim, Su-Geun;Shin, Min-Yong;Kim, Seung-Chul;Lee, Tea-hun;An, Sung-Hyeun
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.22 no.2
    • /
    • pp.79-83
    • /
    • 2018
  • Purpose $^{18}F-FDG$, which is commonly used in PET-CT examinations, is low in capacity and it is difficult to keep the amount of radioactivity busy when the specific activity is high, increasing the amount of space dose and radioactive contamination in the distribution room. Therefore, while evaluating the actual dose administered to patients during the manual dispense process, the medical institution intends to assess the usefulness of the auto dispenser by comparing the differences from the actual dose administered to the patient using the new automatic dispense. Materials and Methods From July 2016 to December 2016, 846 patients were manually administered by workers using $^{18}F-FDG$ and $^{18}F-FDG$ 906 patients were using auto dispenser from July 2017 to December 2017. Results Capacity administered to patients during the manual dispense averaged $35.41{\pm}27.79%$ compared to the recommended dose, and the auto dispenser process showed a small difference of $-2.15{\pm}3.99%$ compared to the recommended dose(p<0.05). Conclusion Working people did not have to touch radioactive medicines directly while they were busy in the auto dispenser, and because of the availability of other tasks far away, the time and distance to receive the exposure were also advantageous. It is believed that future use by many medical institutions will not only reduce the dose to patients but also help reduce the exposure dose to workers.

The Optimization of Reconstruction Method Reducing Partial Volume Effect in PET/CT 3D Image Acquisition (PET/CT 3차원 영상 획득에서 부분용적효과 감소를 위한 재구성법의 최적화)

  • Hong, Gun-Chul;Park, Sun-Myung;Kwak, In-Suk;Lee, Hyuk;Choi, Choon-Ki;Seok, Jae-Dong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.1
    • /
    • pp.13-17
    • /
    • 2010
  • Purpose: Partial volume effect (PVE) is the phenomenon to lower the accuracy of image due to low estimate, which is to occur from PET/CT 3D image acquisition. The more resolution is declined and the lesion is small, the more it causes a big error. So that it can influence the test result. Studied the optimum image reconstruction method by using variation of parameter, which can influence the PVE. Materials and Methods: It acquires the image in each size spheres which is injected $^{18}F$-FDG to hot site and background in the ratio 4:1 for 10 minutes by using NEMA 2001 IEC phantom in GE Discovey STE 16. The iterative reconstruction is used and gives variety to iteration 2-50 times, subset number 1-56. The analysis's fixed region of interest in detail part of image and compute % difference and signal to noise ratio (SNR) using $SUV_{max}$. Results: It's measured that $SUV_{max}$ of 10 mm spheres, which is changed subset number to 2, 5, 8, 20, 56 in fixed iteration to times, SNR is indicated 0.19, 0.30, 0.40, 0.48, 0.45. As well as each sphere's of total SNR is measured 2.73, 3.38, 3.64, 3.63, 3.38. Conclusion: In iteration 6th to 20th, it indicates similar value in % difference and SNR ($3.47{\pm}0.09$). Over 20th, it increases the phenomenon, which is placed low value on $SUV_{max}$ through the influence of noise. In addition, the identical iteration, it indicates that SNR is high value in 8th to 20th in variation of subset number. Therefore, to reduce partial volume effect of small lesion, it can be declined the partial volume effect in iteration 6 times, subset number 8~20 times, considering reconstruction time.

  • PDF

Usefulness of wearing pocket dosimeter in nuclear medicine (핵의학 영상검사에서 Pocket dosimeter 착용의 유용성 평가)

  • Kim, Young-Bin;Lee, Eun-Ji;Kim, Kun-Jae
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.1
    • /
    • pp.25-28
    • /
    • 2011
  • Purpose: The aim of study is to find accuracy of pocket dosimeter in measuring exposed dose in compared with survey meter and to compare exposed dose according as Nuclear medicine exams. Materials and Method: First, radiation dose to point source(185 MBq,370 MBq, ${\ldots}$, 1665 MBq, 1850 MBq) were measured in using a pocket dosimeter and a survey meter. Second, radiation dose to 12 patients injected $^{18}F$-FDG 370 MBq were measured in using a pocket dosimeter and a survey meter. Third, radiation dose to 10 patients injected $^{99m}Tc$-DPD 925 MBq were measured in using a pocket dosimeter and a surveymeter. Result: The average is $70.12{\pm}39.36{\mu}Sv/h$ in measurement of point source with Surveymeter and $5{\pm}3.06{\mu}Sv$ in measurement of point source with Pocket dosimeter. The average is $25.04{\pm}6.16{\mu}Sv/h$ in measurement of PET/CT patients with Surveymeter and $2.41{\pm}0.51{\mu}Sv$ in measurement of PET/CT with Pocket dosimeter. The average is $8.58{\pm}0.96{\mu}Sv/h$ in measurement of Bone Scan patients with Surveymeter and $1{\mu}Sv$ in measurement of Bone Scan patients with Pocket dosimeter. Significant difference found between Survey meter value and Pocket dosimeter value in all experimentation (p<0.001). Conclusion: Accoring to rusult Wearing Pocket dosimeter is usefulnee in manerage of exposed dose in nucler medicine exams.

  • PDF

Comparing the Change in SUVmax Over Time by the Type of Ductal Breast Carcinoma (유방암 환자 중 유관에서 발병되는 암의 종류(IDC와 DCIS)별 시간경과에 따른 SUVmax 변화에 대한 비교)

  • Hyoung, Mi-Jin;Kim, Jeong Nip;Moon, Pyeong Soo;Kim, Kil Hwan
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.1
    • /
    • pp.140-144
    • /
    • 2014
  • Purpose: The recent surge in breast carcinoma patients is reported in a variety of statistics. Breast cancer occurs mainly from duct and lobulus: 85% is from the breast ducts. The present study is aimed to distinguish the difference in $SUV_{max}$ changing over time by identifying the type of cancers attacking from the duct. Materials and Methods: The subjects of the study are 291 female breast cancer patients who have visited the present PET/CT center from July 1, 2012 to July 23, 2013. Based on the pathological results, 248 IDC (invasive ductal carcinoma) patients and 43 DCIS (ductal carcinoma in situ) patients were selected. In the same manner as the general PET/CT scan (3.7 MBq/Kg), F-FDG was injected, followed by the primary test (Routine tests) after 1 hr, and the secondary test (Delay test) after another hr. $SUV_{max}$ was measured after setting ROI in the lesion based on the data from the two tests. Results: As the comparative result of the change in the lesion $SUV_{max}$ between the two groups, IDC group's $SUV_{max}$ showed M=7.11 and SD=5.405 in the primary test and increased M=7.11 and SD=5.405 in the secondary test (P<0.05); DCIS group's $SUV_{max}$ showed M=2.739, SD=1.229 in the primary test and increased M=2.614, SD=1.470 in the secondary test (P<0.05). Conclusion: As the comparative result of $SUV_{max}$ over time between the groups, IDC showed increased $SUV_{max}$ in the secondary test (Delay test) compared to the primary test (Routine test) (P=0.000); DCIS showed decreased $SUV_{max}$ in the secondary test (Delay test) compared to the primary test (Routine test) (P=0.039). It was confirmed through this study that the change in $SUV_{max}$ has occurred over time by the type of breast cancer (IDC or DCIS) occurring from the breast ducts. However, the onset of breast cancers (ILC, LCIS) from the lobulus was not discussed due to the lack of samples. Future research on the breast cancers from the lobulus is suggested.

  • PDF

Study of External Radiation Expose Dose on Hands of Nuclear Medicine Workers (핵의학 종사자에서 손 부위의 외부 피폭선량 연구)

  • Park, Jun-Chul;Pyo, Sung-Jae
    • Journal of radiological science and technology
    • /
    • v.35 no.2
    • /
    • pp.141-149
    • /
    • 2012
  • The aims of this study are to assess external radiation exposed doses of body and hands of nuclear medicine workers who handle radiation sources, and to measure radiation exposed doses of the hands induced by a whole body bone scan with high frequency and handling a radioactive sources like $^{99m}Tc$-HDP and $^{18}F$-FDG in the PET/CT examination. Skillful workers, who directly dispense and inject from radiation sources, were asked to wear a TLD on the chest and ring finger. Then, radiation exposed dose and duration exposed from daily radiation sources for each section were measured by using a pocket dosimeter for the accumulated external doses and the absorbed dose to the hands. In the survey of four medical institutions in Incheon Metropolitan City, only one of four institutions has a radiation dosimeter for local area like hands. Most of institutions uses radiation shielding devices for the purpose of protecting the body trunk, not local area. Even some institutions were revealed not to use such a shielding device. The exposed doses on the hands of nuclear medicine workers who directly handles radioactive sources were approximately twice as much as those on the body. The radiation exposure level for each section of the whole body bone scan with high frequency and that of the PET/CT examination showed that radiation doses were revealed in decreasing order of synthesis of radioactive medicine and installation to a dispensing container, dispensing, administering and transferring. Furthermore, there were statistically significant differences of radiation exposure doses of the hands before and after wearing a syringe shielder in administration of a radioactive sources. In this study, although it did not reach the permissible effective dose for nuclear medicine, the occupational workers were exposed by relatively higher dose level than the non-occupational workers. Therefore, the workers, who closely exposed to radioactive sources should be in compliance with safety management regulations, and take actions to maximally reduce locally exposed dose to hands monitoring with ring TLD.

Image Comparative Evaluation by PET/CT Equipment Using Phantom (팬텀을 활용한 PET/CT 장비 별 영상 비교 평가)

  • Moo-Jin Jeong;Jun-Chul Ham;Yong-Hoon Choi;Young-Kag Bahn;Han-Sang Lim;Jae-Sam Kim
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.28 no.1
    • /
    • pp.71-79
    • /
    • 2024
  • Purpose: This study aims to identify SUV, SNR, spatial resolution, and axial uniformity under the same reconstruction conditions and to find out the differences between equipment models. Materials and Methods: The equipment was GE's Discovery 600, 710, IQ, MI(GE Healthcare, USA), and the Phantom used ACR(American College of Radiology) Flangeless Esser Phantom and PET/SPECT Performance Phantom. The PET/SPECT Performance Phantom injected 18F-FDG at a concentration of 3.8 kBq/mL, and the ACR Flangeless Esser Phantom made the conditions for Hot Spot and Background activity for 4 : 1. Image evaluation was compared and evaluated for SUV, SNR, spatial resolution, and axial uniformity with the same reconstruction that added SharpIR of VPHD. Results: The SUVmax showed a difference up to 4.6% with an average of 2.71, 2.35, 1.89, and 1.43 from Hot Spot 1 to 4, and the SUVmean showed a difference up to 4.7% with 2.06, 1.75, 1.49, and 1.27. There was a difference up to 5% between equipment, and there was no significant difference between both SUVmax and SUVmean. SNR showed a difference up to 0.04 with an average of 0.37, 0.26, 0.18, and 0.11. FWHM showed a difference up to 0.27. Lastly, COV of axial uniformity was up to 0.018. Conclusion: SUV showed differences within 5% between equipment and showed no significant difference. This is considered to be used as basic data that can be used for the development and replacement of equipment because it has the advantage of being able to observe with a large number of equipment.

The Evaluation of Reconstruction Method Using Attenuation Correction Position Shifting in 3D PET/CT (PET/CT 3D 영상에서 감쇠보정 위치 변화 방법을 이용한 영상 재구성법의 평가)

  • Hong, Gun-Chul;Park, Sun-Myung;Jung, Eun-Kyung;Choi, Choon-Ki;Seok, Jae-Dong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.2
    • /
    • pp.172-176
    • /
    • 2010
  • Purpose: The patients' moves occurred at PET/CT scan will cause the decline of correctness in results by resulting in inconsistency of Attenuation Correction (AC) and effecting on quantitative evaluation. This study has evaluated the utility of reconstruction method using AC position changing method when having inconsistency of AC depending on the position change of emission scan after transmission scan in obtaining PET/CT 3D image. Materials and Methods: We created 1 mL syringe injection space up to ${\pm}2$, 6, 10 cm toward x and y axis based on central point of polystyrene ($20{\times}20110$ cm) into GE Discovery STE16 equipment. After projection of syringe with $^{18}F$-FDG 5 kBq/mL, made an emission by changing the position and obtained the image by using AC depending on the position change. Reconstruction method is an iteration reconstruction method and is applied two times of iteration and 20 of subset, and for every emission data, decay correction depending on time pass is applied. Also, after setting ROI to the position of syringe, compared %Difference (%D) at each position to radioactivity concentrations (kBq/mL) and central point. Results: Radioactivity concentrations of central point of emission scan is 2.30 kBq/mL and is indicated as 1.95, 1.82 and 1.75 kBq/mL, relatively for +x axis, as 2.07, 1.75 and 1.65 kBq/mL for -x axis, as 2.07, 1.87 and 1.90 kBq/mL for +y axis and as 2.17, 1.85 and 1.67 kBq/mL for -y axis. Also, %D is yield as 15, 20, 23% for +x axis, as 9, 23, 28% for -x axis, as 12, 21, 20% for +y axis and as 8, 22, 29% for -y axis. When using AC position changing method, it is indicated as 2.00, 1.95 and 1.80 kBq/mL, relatively for +x axis, as 2.25, 2.15 and 1.90 kBq/mL for -x axis, as 2.07, 1.90 and 1.90 kBq/mL for +y axis, and as 2.10, 2.02, and 1.72 kBq/mL for -y axis. Also, %D is yield as 13, 15, 21% for +x axis, as 2, 6, 17% for -x axis, as 9, 17, 17% for +y axis, and as 8, 12, 25% for -y axis. Conclusion: When in inconsistency of AC, radioactivity concentrations for using AC position changing method increased average of 0.14, 0.03 kBq/mL at x, y axis and %D was improved 6.1, 4.2%. Also, it is indicated that the more far from the central point and the further position from the central point under the features that spatial resolution is lowered, the higher in lowering of radioactivity concentrations. However, since in actual clinic, attenuation degree increases more, it is considered that when in inconsistency, such tolerance will be increased. Therefore, at the lesion of the part where AC is not inconsistent, the tolerance of radioactivity concentrations will be reduced by applying AC position changing method.

  • PDF

PET/CT SUV Ratios in an Anthropomorphic Torso Phantom (의인화몸통팬텀에서 PET/CT SUV 비율)

  • Yeon, Joon-Ho;Hong, Gun-Chul;Kang, Byung-Hyun;Sin, Ye-Ji;Oh, Uk-Jin;Yoon, Hye-Ran;Hong, Seong-Jong
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.1
    • /
    • pp.23-29
    • /
    • 2020
  • The standard uptake values (SUVs) strongly depend on positron emission tomographs (PETs) and image reconstruction methods. Various image reconstruction algorithms in GE Discovery MIDR (DMIDR) and Discovery Ste (DSte) installed at Department of Nuclear Medicine, Seoul Samsung Medical Center were applied to measure the SUVs in an anthropomorphic torso phantom. The measured SUVs in the heart, liver, and background were compared to the actual SUVs. Applied image reconstruction algorithms were VPFX-S (TOF+PSF), QCFX-S-350 (Q.Clear+TOF+PSF), QCFX-S-50, VPHD-S (OSEM+PSF) for DMIDR, and VUE Point (OSEM) and FORE-FBP for DSte. To reduce the radiation exposure to radiation technologists, only the small amount of radiation source 18F-FDG was mixed with the distilled water: 2.28 MBq in the 52.5 ml heart, 20.3 MBq in the 1,290 ml liver and 45.7 MBq for the 9,590 ml in the background region. SUV values in the heart with the algorithms of VPFX-S, QCFX-S-350, QCFX-S-50, VPHD-S, VUE Point, and FOR-FBP were 27.1, 28.0, 27.1, 26.5, 8.0, and 7.4 with the expected SUV of 5.9, and in the background 4.2, 4.1, 4.2, 4.1, 1.1, and 1.2 with the expected SUV of 0.8, respectively. Although the SUVs in each region were different for the six reconstruction algorithms in two PET/CTs, the SUV ratios between heart and background were found to be relatively consistent; 6.5, 6.8, 6.5, 6.5, 7.3, and 6.2 for the six reconstruction algorithms with the expected ratio of 7.8, respectively. Mean SNRs (Signal to Noise Ratios) in the heart were 8.3, 12.8, 8.3, 8.4, 17.2, and 16.6, respectively. In conclusion, the performance of PETs may be checked by using with the SUV ratios between two regions and a relatively small amount of radioactivity.