• Title/Summary/Keyword: $^{18}F$ labeling

Search Result 34, Processing Time 0.024 seconds

UV-HPLC Determination of Carbowyl Group Using 2-Bromoacetyltriphenylene as a Pre-labeling Reagent - The isolative determination of prostaglandin $E_2$ and $F_2{\alpha}$ by HPLC (2-Bromoacetyltriphenylene 유도체화제를 이용한 카르복실기 함유성분의 분석법 (I) - 프로스타글란딘 $E_2$$F_2{\alpha}$ 혼합물의 HPLC에 의한 분리정량)

  • 이왕규;정해수;김박광
    • YAKHAK HOEJI
    • /
    • v.30 no.6
    • /
    • pp.311-316
    • /
    • 1986
  • A new UV labeling reagent was developed and used in HPLC for the determination of prostaglandin $E_2$ which have weak UV light-absorbing property. This reagent, 2-bromoacetyltriphenylene, was synthesized by the bromination of 2-acetyltriphenylene which was obtained from triphenylene by Friedel-Crafts reaction. The wave length maximum (${\lambda}_{max}^{CH_3CN}$ of this reagent was 268nm. Prostaglandin E$_2$ was extracted from prostaglandin E$_2$-$\beta$-cyclodextrin using a Sep-pak $C_{18}$ cartridge. The prostaglandin E$_2$ was labeled with 2-bromoacetyl-triphenylene in aectonitrite using 18-crown-6-ether as catalyst. Derivatized prostaglandins were separated on a reversed-phase column (Radial-pak) $\mu$-Bondapak $C_{18}$ using acetonitrile: water=60:40 as mobile phase. The effluent was monitored by UV detector at 254nm filter kit. Linearity of calibration curve was obtained between 30ng and 140ng, and the lower limit of detection was 5ng.

  • PDF

Radiolabeling of nanoparticle for enhanced molecular imaging

  • Kim, Ho Young;Lee, Yun-Sang;Jeong, Jae Min
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.3 no.2
    • /
    • pp.103-112
    • /
    • 2017
  • The combination of nanoparticle with radioisotope could give the in vivo information with high sensitivity and specificity. However, radioisotope labeling of nanoparticle is very difficult and radioisotopes have different physicochemical properties, so the radioisotope selection of nanoparticle should be carefully considered. $^{18}F$ was first option to be considered for labeling of nanoparticle. For the labeling of $^{18}F$ with nanoparticle, Prosthetic group is widely used. Iodine, another radioactive halogen, is often used. Since radioiodine isotopes are various, they can be used for different imaging technique or therapy in the same labeling procedures. $^{99m}Tc$ can easily be obtained as pertechnatate ($^{99m}{TcO_4}^-$) by commercial generator. Ionic $^{68}Ga$ (III) in dilute HCl solution is also obtained by generator system, but $^{68}Ga$ can be substituted for $^{67}Ga$ because of the short half-life (67.8 min). $^{64}Cu$ emits not only positron but also ${\beta}-particle$. Therefore $^{64}Cu$ can be used for imaging and therapy at the same time. These radioactive metals can be labeled with nanoparticle using the bifunctional chelator. $^{89}Zr$ has longer half-life (78.4 h) and is used for the longer imaging time. Unlike different metals, $^{89}Zr$ should use the other chelate such as DFO, 3,4,3-(LI-1,2-HOPO) or DFOB.

Synthesis and Biodistribution of Flumazenil Derivative [F-18](3-(2-Fluoro) flumazenil for Imaging Benzodiazepine Receptor (벤조디아제핀 수용체 영상용 양전자 방출 핵종 표지 플루마제닐 유도체 [F-18](3-(2-Fluoro)flumazenil의 합성과 생체 내 분포)

  • Hong, Sung-Hyun;Jeong, Jae-Min;Chang, Young-Soo;Lee, Dong-Soo;Chung, June-Key;Cho, Jung-Hyuck;Lee, Sook-Ja;Kang, Sam-Sik;Lee, Myung-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.33 no.6
    • /
    • pp.527-536
    • /
    • 1999
  • Purpose: Radiotracers that bind to the central benzodiazepine receptor are useful for the investigation of various neurological and psychiatric diseases. [C-11]Flumazenil, a benzodiazepine antagonist, is the most widely used radioligand for central benzodiazepine receptor imaging by PET. We synthesized 3-(2-[F-18]fluoro)flumazenil, a new fluorine-18 ($t_{1/2}$= 110 min) labeled analogue of benzodiazepine receptor imaging agent, and evaluated in vivo for biodistribution in mice. Materials and Methods: Flumazenil (Ro 15-1788) was synthesized by a modification of the reported method. Precursor of 3-(2-[F-18]fluoro)flumazenil, the tosylated flumazenil derivative was prepared by the tosylation of the ethyl ester by ditosylethane. [F-18] labeling of tosyl substitued flumazenil precursor was performed by adding F-18 ion at $85^{\circ}C$ in the hot ceil for 20 min. The reaction mixture was trapped by C18 cartridge, washed with 10% ethanol, and eluted by 40% ethanol. Bidistribution in mice was determined after intravenous injection. Results: The total chemical yield of tosylated flumazenil derivative was ${\sim}40%$. The efficiency of labeling 3-(2-[F-18]fluoro)flumazenil was 66% with a total synthesis time of 50 min. Brain uptakes of 3-(2-[F-18]fluoro)flumazenil at 10, 30, 60 min after injection, were $2.5{\pm}0.37,\;2.2{\pm}0.26,\;2.1{\pm}0.11$ and blood activities were $3.7{\pm}0.43,\;3.3{\pm}0.07,\;3.3{\pm}0.09%ID/g$, respectively. Conclusion: We synthesized a tosylated flumazenil derivative which was successfully labeled with no-carrier-added F-18 by nucleophilic substitution.

  • PDF

Optimization of Automated Solid Phase Extraction-based Synthesis of [18F]Fluorocholine (고체상 추출법을 기반으로 한 [18F]Fluorocholine 합성법의 최적화 연구)

  • Jun Young PARK;Jeongmin SON;Won Jun KANG
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.55 no.4
    • /
    • pp.261-268
    • /
    • 2023
  • [18F]Fluorocholine is a radiopharmaceutical used non-invasively in positron emission tomography to diagnose parathyroid adenoma, prostate cancer, and hepatocellular carcinoma by evaluating the choline metabolism. In this study, a radiolabeling method for [18F]fluorocholine was optimized using a solid phase extraction (SPE) cartridge. [18F]Fluorocholine was labeled in two steps using an automated synthesizer. In the first step, dibromomethane was reacted with [18F]KF/K2.2.2/K2CO3 to obtain the intermediate [18F]fluorobromomethane. In the second step, [18F]fluorobromomethane was passed through a Sep-Pak Silica SPE cartridge to remove the impurities and then reacted with N,N-dimethylaminoethanol (DMAE) in a Sep-Pak C18 SPE cartridge to label [18F]fluorocholine. The reaction conditions of [18F]fluorocholine were optimized. The synthesis yield was confirmed according to the number of silica cartridges and DMAE concentration. No statistically significant difference in the synthesis yield of [18F]fluorocholine was observed when using four or three silica cartridges (P>0.05). The labeling yield was 11.5±0.5% (N=4) when DMAE was used as its original solution. On the other hand, when diluted to 10% with dimethyl sulfoxide, the radiochemical yield increased significantly to 30.1±5.2% (N=20). In conclusion, [18F]Fluorocholine for clinical use can be synthesized stably in high yield by applying an optimized synthesis method.

Development of Benzothiazole-Based Boron and Fluorine Complex for Boron Neutron Capture Therapy

  • Soyeon Kim;Iqra Bibi;Jung Young Kim;Ji-Ae Park
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.10 no.1
    • /
    • pp.13-19
    • /
    • 2024
  • Boron neutron capture therapy (BNCT) represents a cutting-edge approach in cancer treatment, offering a promising avenue to enhance cure rates for patients resistant to conventional therapies. A critical factor for successful BNCT is the development of boron drugs with exceptional tumor selectivity. In this study, we synthesized a novel benzothiazole derivative, potassium (4-(benzo[d]thiazol-2-yl)-2,6-difluorophenyl) trifluoroborate (B13), incorporating boron and fluorine. Following its synthesis, we radiolabeled the drug with 18F via a 19F/18F isotope exchange reaction, producing 18F-B13 with good radiochemical purity and yield. Notably, the radiotracer demonstrated significant uptake in U87MG tumors, as evidenced by PET imaging. Biodistribution analysis revealed a substantial accumulation of boron (4 ppm) in U87MG tumors 1h post-intravenous injection. Moreover, it showcased significant tumor/muscle ratios (2.04) 2 h post-injection. While the tumor selectivity of B13 did not meet the stringent standards for BNCT, its potential as a BNCT tracer remains promising. Notably, the tumor/muscle ratio remained elevated up to two hours post-injection, suggesting future avenues for optimization and clinical translation.

Synthesis and Small Animal Brain PET Study of a Serotonin Receptor Radiotracer, 18F-Mefway (세로토닌 5-HT1A수용체 방사성 추적자 18F-Mefway의 합성과 소동물 뇌 PET 연구)

  • Ahn, Sung-Min;Hong, Tae-Kee;Ryu, Young-Hoon;Choi, Jae-Yong;Kim, Sung-Chul
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.11
    • /
    • pp.262-270
    • /
    • 2009
  • $^{18}F$-mefway has been developed as radioligand for serotonin receptor 5-$HT_{1A}$. The object of this study was to obtain the mefway precursor with the higher yield than previous method and to identify whether $^{18}F$-mefway can bind to 5-$HT_{1A}$ or not. from microPET imaging of small animal brain. Precursor was prepared by a modification of the reported procedure then [$^{18}F$] labeling was performed by adding $^{18}F$ ion at $130^{\circ}C$ in the hot cell for 30min. After purification of reaction mixture using alumina Sep-pak and HPLC, microPET images of small animal brain were determined. The chemical yield of precursor was increased from 9% to 34% using oxalyl chloride and LAH/diethylether. We synthesized a precursor which was successfully labeled with no-carrier-added $^{18}F$-by new synthetic route. This research suggest that $^{18}F$-mefway will be used a radiopharmaceutical for evaluation of central nerve system disorder as imaging a gent for 5-$HT_{1A}$ receptor.

Production of $[^{18}F]F_2$ Gas for Electrophilic Substitution Reaction (친전자성 치환반응을 위한 $[^{18}F]F_2$ Gas의 생산 연구)

  • Moon, Byung-Seok;Kim, Jae-Hong;Lee, Kyo-Chul;An, Gwang-Il;Cheon, Gi-Jeong;Chun, Kwon-Soo
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.40 no.4
    • /
    • pp.228-232
    • /
    • 2006
  • Purpose: electrophilic $^{18}F(T_{1/2}=110\;min)$ radionuclide in the form of $[^{18}F]F_2$ gas is of great significance for labeling radiopharmaceuticals for positron omission tomography (PET). However, its production In high yield and with high specific radioactivity is still a challenge to overcome several problems on targetry. The aim of the present study was to develop a method suitable for the routine production of $[^{18}F]F_2$ for the electrophilic substitution reaction. Materials and Methods: The target was designed water-cooled aluminum target chamber system with a conical bore shape. Production of the elemental fluorine was carried out via the $^{18}O(p,n)^{18}F$ reaction using a two-step irradiation protocol. In the first irradiation, the target filled with highly enriched $^{18}O_2$ was irradiated with protons for $^{18}F$ production, which were adsorbed on the inner surface of target body. In the second irradiation, the mixed gas ($1%[^{19}F]F_2/Ar$) was leaded into the target chamber, fellowing a short irradiation of proton for isotopic exchange between the carrier-fluorine and the radiofluorine absorbed in the target chamber. Optimization of production was performed as the function of irradiation time, the beam current and $^{18}O_2$ loading pressure. Results: Production runs was performed under the following optimum conditions: The 1st irradiation for the nuclear reaction (15.0 bar of 97% enriched $^{18}O_2$, 13.2 MeV protons, 30 ${\mu}A$, 60-90 min irradiation), the recovery of enriched oxygen via cryogenic pumping; The 2nd irradiation for the recovery of absorbed radiofluorine (12.0 bar of 1% $[^{19}F]fluorine/argon$ gas, 13.2 MeV protons, 30 ${\mu}A$, 20-30 min irradiation) the recovery of $[^{18}F]fluorine$ for synthesis. The yield of $[^{18}F]fluorine$ at EOB (end of bombardment) was achieved around $34{\pm}6.0$ GBq (n>10). Conclusion: The production of $^{18}F$ electrophilic agent via $^{18}O(p,n)^{18}F$ reaction was much under investigation. Especially, an aluminum gas target was very advantageous for routine production of $[^{18}F]fluorine$. These results suggest the possibility to use $[^{18}F]F_2$ gas as a electrophilic substitution agent.

A Detection Model using Labeling based on Inference and Unsupervised Learning Method (추론 및 비교사학습 기법 기반 레이블링을 적용한 탐지 모델)

  • Hong, Sung-Sam;Kim, Dong-Wook;Kim, Byungik;Han, Myung-Mook
    • Journal of Internet Computing and Services
    • /
    • v.18 no.1
    • /
    • pp.65-75
    • /
    • 2017
  • The Detection Model is the model to find the result of a certain purpose using artificial intelligent, data mining, intelligent algorithms In Cyber Security, it usually uses to detect intrusion, malwares, cyber incident, and attacks etc. There are an amount of unlabeled data that are collected in a real environment such as security data. Since the most of data are not defined the class labels, it is difficult to know type of data. Therefore, the label determination process is required to detect and analysis with accuracy. In this paper, we proposed a KDFL(K-means and D-S Fusion based Labeling) method using D-S inference and k-means(unsupervised) algorithms to decide label of data records by fusion, and a detection model architecture using a proposed labeling method. A proposed method has shown better performance on detection rate, accuracy, F1-measure index than other methods. In addition, since it has shown the improved results in error rate, we have verified good performance of our proposed method.

Comparison of FDG Uptake with Pathological Parameters in the Well-differentiated Thyroid Cancer (분화성 갑상선 암에서 FDG 섭취 정도와 병리학적 지표들과의 비교)

  • Choi, Woo-Hee;Chung, Yong-An;Kim, Ki-Jun;Park, Chang-Suk;Jung, Hyun-Suk;Sohn, Hyung-Sun;Chung, Soo-Kyo;Yoo, Chang-Young
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.43 no.1
    • /
    • pp.40-47
    • /
    • 2009
  • Purpose: Differentiated thyroid cancer (DTC) has variable degree of F-18 FDG avidity. The purpose of this study was to evaluate the relationship between F-18 FDG uptake and pathological or immunohistochemical features of DTC. Materials and Methods: DTC patients who underwent both pre-operative F-18 FDG PET/CT scan and surgery were included in the study. Maximum standardized uptake values (SUVmax) of primary tumor were calculated. If the primary tumor showed no perceptibly increased F-18 FDG uptake, region of interest was drawn based on finding of a portion of the PET/CT images. Pathological and immunohistochemical markers such as presence of lymph node (LN) metastasis and underlying thyroiditis, tumor size, Ki-67 labeling index, expressions of EGFR, COX-2, and Galectin-3 were evaluated. Results: Total of 106 patients was included (102 papillary carcinomas, 4 follicular carcinomas). The mean SUVmax of the large tumors (above 1 cm) was significantly higher than the mean SUVmax of small (equal to or less than 1 cm) ones ($7.8{\pm}8.5$ vs. $3.6{\pm}3.1$, p=0.004). No significant difference in F-18 FDG uptake was found according to the presence or absence of LN metastasis and underlying thyroiditis, or the degree of Ki-67 labeling index, expression of EGFR, COX- 2 and Galectin-3. Conclusion: In conclusion, the degree of F-18 FDG uptake in DTC was associated with the size of primary tumor. But there seem to be no relationship between F-18 FDG uptake of DTC and expression of Ki-67, EGFR, COX-2 and Galectin-3.

Silicon transporter genes of Fragilariopsis cylindrus (Bacillariophyceae) are differentially expressed during the progression of cell cycle synchronized by Si or light

  • Oh, Han Sang;Lee, Sung-eun;Han, Chae-seong;Kim, Joon;Nam, Onyou;Seo, Seungbeom;Chang, Kwang Suk;Jin, EonSeon;Hwang, Yong-sic
    • ALGAE
    • /
    • v.33 no.2
    • /
    • pp.191-203
    • /
    • 2018
  • Fragilariopsis cylindrus is one of the most successful psychrophiles in the Southern Ocean. To investigate the molecular mechanism of biomineralization in this species, we attempted to synchronize F. cylindrus growth, since new cell wall formation is tightly coupled to the cell division process. Nutrient limitation analysis showed that F. cylindrus cultures rapidly stopped growing when deprived of silicate or light, while growth continued to a certain extent in the absence of nitrate. Flow cytometry analysis indicated that deprivation of either silicate or light could effectively arrest the cell cycle of this diatom species at the G1 phase, suggesting that synchrony can be established using either factor. Fluorescence labeling of new cell walls was faintly detectable as early as approximately 6 h after silicon repletion or light irradiation, and labeling was markedly intensified by 18 h. It is revealed that the synthesis of girdle bands begins before valve synthesis in this species, with active valve synthesis occurring during the G2 / M phase. Expression profiling revealed that selective member(s) of the F. cylindrus SIT genes (FcSIT) respond to silicate and light, with a different set of genes being responsive to each factor. The Si / light double depletion experiments demonstrated that expression of one FcSIT gene is possibly correlated to transition to G2 / M phase of the cell cycle, when the valve is actively formed.