• Title/Summary/Keyword: $\pi$-McCoy ring

Search Result 3, Processing Time 0.014 seconds

MCCOY CONDITION ON IDEALS OF COEFFICIENTS

  • Cheon, Jeoung Soo;Huh, Chan;Kwak, Tai Keun;Lee, Yang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.6
    • /
    • pp.1887-1903
    • /
    • 2013
  • We continue the study of McCoy condition to analyze zero-dividing polynomials for the constant annihilators in the ideals generated by the coefficients. In the process we introduce the concept of ideal-${\pi}$-McCoy rings, extending known results related to McCoy condition. It is shown that the class of ideal-${\pi}$-McCoy rings contains both strongly McCoy rings whose non-regular polynomials are nilpotent and 2-primal rings. We also investigate relations between the ideal-${\pi}$-McCoy property and other standard ring theoretic properties. Moreover we extend the class of ideal-${\pi}$-McCoy rings by examining various sorts of ordinary ring extensions.

ON A GENERALIZATION OF THE MCCOY CONDITION

  • Jeon, Young-Cheol;Kim, Hong-Kee;Kim, Nam-Kyun;Kwak, Tai-Keun;Lee, Yang;Yeo, Dong-Eun
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.6
    • /
    • pp.1269-1282
    • /
    • 2010
  • We in this note consider a new concept, so called $\pi$-McCoy, which unifies McCoy rings and IFP rings. The classes of McCoy rings and IFP rings do not contain full matrix rings and upper (lower) triangular matrix rings, but the class of $\pi$-McCoy rings contain upper (lower) triangular matrix rings and many kinds of full matrix rings. We first study the basic structure of $\pi$-McCoy rings, observing the relations among $\pi$-McCoy rings, Abelian rings, 2-primal rings, directly finite rings, and ($\pi-$)regular rings. It is proved that the n by n full matrix rings ($n\geq2$) over reduced rings are not $\pi$-McCoy, finding $\pi$-McCoy matrix rings over non-reduced rings. It is shown that the $\pi$-McCoyness is preserved by polynomial rings (when they are of bounded index of nilpotency) and classical quotient rings. Several kinds of extensions of $\pi$-McCoy rings are also examined.

SOME ABELIAN MCCOY RINGS

  • Rasul Mohammadi;Ahmad Moussavi;Masoome Zahiri
    • Journal of the Korean Mathematical Society
    • /
    • v.60 no.6
    • /
    • pp.1233-1254
    • /
    • 2023
  • We introduce two subclasses of abelian McCoy rings, so-called π-CN-rings and π-duo rings, and systematically study their fundamental characteristic properties accomplished with relationships among certain classical sorts of rings such as 2-primal rings, bounded rings etc. It is shown that a ring R is π-CN whenever every nilpotent element of index 2 in R is central. These rings naturally generalize the long-known class of CN-rings, introduced by Drazin [9]. It is proved that π-CN-rings are abelian, McCoy and 2-primal. We also show that, π-duo rings are strongly McCoy and abelian and also they are strongly right AB. If R is π-duo, then R[x] has property (A). If R is π-duo and it is either right weakly continuous or every prime ideal of R is maximal, then R has property (A). A π-duo ring R is left perfect if and only if R contains no infinite set of orthogonal idempotents and every left R-module has a maximal submodule. Our achieved results substantially improve many existing results.