• Title/Summary/Keyword: $\mu$-TAS

Search Result 37, Processing Time 0.03 seconds

Microfluidic Device for Bio Analytical Systems

  • Junhong Min;Kim, Joon-Ho;Kim, Sanghyo
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.2
    • /
    • pp.100-106
    • /
    • 2004
  • Micro-fluidics is one of the major technologies used in developing micro-total analytical systems (${\mu}$-TAS), also known as “lab-on-a-chip”. With this technology, the analytical capabilities of room-size laboratories can be put on one small chip. In this paper, we will briefly introduce materials that can be used in micro-fluidic systems and a few modules (mixer, chamber, and sample prep. modules) for lab-on-a-chip to analyze biological samples. This is because a variety of fields have to be combined with micro-fluidic technologies in order to realize lab-on-a-chip.

Diode Temperature Sensor Array for Measuring and Controlling Micro Scale Surface Temperature (미소구조물의 표면온도 측정 및 제어를 위한 다이오드 온도 센서 어레이 설계)

  • Han, Il-Young;Kim, Sung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1231-1235
    • /
    • 2004
  • The needs of micro scale thermal detecting technique are increasing in biology and chemical industry. For example, Thermal finger print, Micro PCR(polymer chain reaction), ${\mu}TAS$ and so on. To satisfy these needs, we developed a DTSA(Diode Temperature Sensor Array) for detecting and controlling the temperature on small surface. The DTSA is fabricated by using VLSI technique. It consists of 32 ${\times}$ 32 array of diodes (1,024 diodes) for temperature detection and 8 heaters for temperature control on a 8mm ${\times}$ 8mm surface area. The working principle of temperature detection is that the forward voltage drop across a silicon diode is approximately proportional to the inverse of the absolute temperature of diode. And eight heaters ($1K{\Omega}$) made of poly-silicon are added onto a silicon wafer and controlled individually to maintain a uniform temperature distribution across the DTSA. Flip chip packaging used for easy connection of the DTSA. The circuitry for scanning and controlling DTSA are also developed

  • PDF

The study of three dimentional flow field using defocusing method in micromixer (Defocusing 기법을 이용한 마이크로 믹서내의 3 차원 유동장 측정연구)

  • Kim, Su-Heon;Yoon, Sang-Youl;Kim, Kyung-Chun
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.99-102
    • /
    • 2005
  • This study was conducted for obtaining the optimized data to build the mixer or micro fluid device as measuring the three dimensions flow field in micro mixer. To acquire the rapid diffusion on the region of low Reynolds (Re < 100), the staggered herringbone mixer using chaotic advection was selected in this case. At first, by conducting the numerical analytical virtual experiment using CFD-ACE+, three dimensions flow field in the micro mixer was estimated As this flow field was proven using defocusing particle tracing method, the behavior of micro flow with three dimensional aspects could be analyzed. Numerical analysis and flow pattern in the micro mixer by experimental verification made to be able to analyze the chaotic advection. These can be important sources for building more optimized form. Verifying the information of three dimensional flow structure, these information can be used as the data for developing and improving the $\mu$ -TAS.

  • PDF

Manipulation of Single Cell for Separation and Investigation

  • Arai, Fumihito;Ichikawa, Akihiko;Maruyama, Hisataka;Motoo, Kouhei;Fukuda, Toshio
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.2
    • /
    • pp.135-143
    • /
    • 2004
  • Recently, high throughput screening for microorganisms with desired characteristics from a large heterogeneous population has become possible. Single cell separation has taken on increasing significance in recent years, and several different methods have been proposed so far. In this paper, we introduce several cell manipulation methods aiming at single cell separation and investigation. At first, methods for the separation of microorganisms are classified. Then, we introduce two different approaches, that is, (1) indirect manipulation using laser trapped microtools and (2) thermal gelation.

Integrated microfluidic device with polymer-based micropump and microvalve for $\mu$-TAS devices (마이크로 펌프, 밸브가 집적된 폴리머 기반의 미세 유체제어 시스템의 기계적 특성 강화)

  • Ra, Gyu-Sik;Jha, Sandeep Kumar;Yoon, Tae-Sik;Lee, Hyun-Ho;Kim, Yong-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1458-1459
    • /
    • 2008
  • 미세 유체 제어 시스템 (마이크로 펌프, 마이크로 밸브, 마이크로 채널, 마이크로 믹서 등)의 집적은 화학 및 바이오 유체를 제어하는 Lab-on-a-chip 의 일부분으로서 사용되며 이러한 시스템의 집적은 Lab-on-a-chip 개발을 위해 필수적으로 요구된다. 본 논문에서는 이러한 microchip을 구현하기 위해서 초미세 유체 제어 소자인 마이크로 펌프와 마이크로 밸브를 같은 기판 위에 Polydimethylsiloxane (PDMS)와 indium tin oxade (ITO)를 사용하여 집적하였다. 그리고 밸브의 반복 작동 시 계속적인 유량의 감소를 줄이기 위해 PDMS 의 혼합비를 달리하여 PDMS membrane 의 기계적 특성을 강화시켰다.

  • PDF

Improvement in Wettability of Polymethyl methacrylate(PMMA) Using Nd:YAG Laser (Nd:YAG 페이저를 이용한 Polymethyl methacrylate(PMMA) 표면 친수성 향상)

  • Shin, Sung-Kwon;Lee, Cheon
    • Proceedings of the KIEE Conference
    • /
    • 2006.10a
    • /
    • pp.111-112
    • /
    • 2006
  • 실리콘을 기반으로 한 micro-Total Analysis Systems(${\mu}$-TAS)이 출현한 이후에, 현재까지 다양한 고분자 화합물을 이용한 유체소자의 연구가 진행중이다. 고분자 화합물은 실리콘과 유리를 이용한 전통적인 유체소자 재료에 비해 재료의 경제성과 소자 제작의 용이성 그리고 처리하고자 하는 유체에 맞는 다양한 재료를 선택할 수 있다는 장점을 지니고 있다. 하지만 고분자 화합물의 표면 에너지가 실리콘과 유리에 비해 낮은 단점을 가지고 있다. 이러한 문제를 극복하기 위해 다양한 표면처리 연구가 이루어져왔다. 레이저를 이용한 표면처리는 실험장치가 간단하고 대기 중에서 실시할 수 있다는 장점을 가지고 있다. 본 연구에서는 Nd:YAG 레이저(${\lambda}$=266 nm, pulse)를 이용하여 유체소자 재료로써 많이 사용되는 polymethly methacrylate(PMMA)의 표면개질을 시도하였다. 표면처리 후 접촉각 측정기를 이용하여 표면개질 정도를 확인한 결과, 표면 산소 함유량이 증가됨에 따라 접촉각이 감소하였다. 결론적으로 PMMA의 본래 성질은 유지한 채 레이저 표면처리를 이용한 표면 에너지 증가 효과를 볼 수 있었다.

  • PDF

A STUDY ON THE DEVELOPMENT OF ONE-DIMENSIONAL GUI PROGRAM FOR MICROFLUIDIC-NETWORK DESIGN (마이크로 유동 네트워크 설계를 위한 1차원 GUI 프로그램 개발에 관한 연구)

  • Park, I.H.;Kang, S.;Suh, Y.K.
    • Journal of computational fluids engineering
    • /
    • v.14 no.4
    • /
    • pp.86-92
    • /
    • 2009
  • Nowadays, the development of microfluidic chip [i.e. biochip, micro-total analysis system ($\mu$-TAS) and LOC (lab-on-a-chip)] becomes more active, and the microchannels to deliver fluid by pressure or electroosmotic forces tend to be more complex like electronic circuits or networks. For a simple network of channels, we may calculate the pressure and the flow rate easily by using suitable formula. However, for complex network it is not handy to obtain such information with that simple way. For this reason, Graphic User Interface (GUI) program which can rapidly give required information should be necessary for microchip designers. In this paper, we present a GUI program developed in our laboratory and the simple theoretical formula used in the program. We applied our program to simple case and could get results compared well with other numerical results. Further, we applied our program to several complex cases and obtained reasonable results.

Fabrication of Microcantilever-based Biosensor Using the Surface Micromachining Technique (표면 미세 가공기술을 이용한 마이크로 캔틸레버의 제작과 바이오센서로의 응용)

  • Yoo Kyung-Ah;Joung Seung-Ryong;Kang C. J.;Kim Yong-Sang
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.1
    • /
    • pp.11-15
    • /
    • 2006
  • We propose an optical and an electrical detection methods for detecting various bio-molecules effectively with microcantilevers. The microcantilevers were fabricated employing surface micromachining technique that has attractive advantages in terms of cost efficiency, simplicity and ability of fabricating in array. The fluid cell system for injection of bio-molecular solution is fabricated using polydimethylsiloxane (PDMS) and a fused silica glass. The microcantilever is deflected with respect to the difference of the surface stress caused by the formation of self-assembled bio-molecules on the gold coated side of the microcantilever. It detected cystamine dihydrochloride and glutaraldehyde molecules and analyzed individual concentrations of the cystamine dihydrochloride solution. We confirm that the deflections of bending-up or bending-down are occurred by the bio-molecule adsorption and microcantilever can be widely used to a ${\mu}-TAS$ and a lab-on-a-chip for a potential detection of various bio-molecules.

The Movement Characteristic of Micro Droplet by BZN in EWOD structure (EWOD 구조에서 상유전체 BZN에 의한 micro droplet의 이동 특성)

  • Kim, Nah-Young;Hong, Sung-Min;Park, Soon-Sup
    • Proceedings of the KIEE Conference
    • /
    • 2005.11a
    • /
    • pp.36-38
    • /
    • 2005
  • This study is about how to lower the driving voltage that enables to move the micro droplet by the EWOD (Electro Wetting On Dielectric) mechanism. EWOD is well known that it is used ${\mu}-TAS$ digital micro fluidics system. As the device which is fabricated with dielectric layer between electrode and micro droplet is applied voltage, the hydrophobic surface is changed into the hydrophilic surface by electrical property. Therefore, EWOD induces the movement of micro droplet with reducing contact angle of micro droplet. The driving voltage was depended on the dielectric constant of dielectric layer, thus it can be reduced by increase of dielectric constant. Typically, very high voltage ($100V{\sim}$) is used to move the micro droplet. In previous study, we used $Ta_{2}O_{5}$ as the dielectric layer and driving voltage was 23V that reduced 24 percent compared with $SiO_2$. In this study, we used $BZN(Bi_{2}O_{3}ZnO-Nb_{2}O_{5})$ layer which had high dielectric constant. It was operated the just 12V. And micro droplet was moved within Is on 15V. It was reduced the voltage until 35 percents compare with $Ta_{2}O_{5}$ and 50 percents compare with $SiO_2$. The movement of micro droplet within 1s was achieved with BZN (ferroelectrics)just on 15V.

  • PDF

Surface Modification of Polymethyl methacrylate(PMMA) by Laser Surface Treatment for Microfluidic Chip (유체소자 성능향상을 위한 Polymethyl methacrylate(PMMA)의 레이저 표면처리)

  • Shin, Sung-Kwon;Lee, Sang-Don;Lee, Cheon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.2
    • /
    • pp.334-337
    • /
    • 2007
  • After the advent of micro-Total Analysis Systems(${\mu}-TAS$) based on silicon various polymer for microfluidic chip has been studied. Polymer materials for microfluidic compared with silicon and glass which were traditional materials of a microfluidic chip, have the advantages of economical efficiency simple manufacturing process and wide materials selectivity corresponding to fluids. Surface energy of polymers we, however lower than silicon or glass. To overcome this problem, various surface modification methods have been investigated. The surface modification using laser has the advantage of the simple experiment that only directly irradiated laser beam on the material surface in the air. This work discuss the surface modification of polymethly methacrylate(PMMA) by 4th harmonic Nd:YAG laser (${\lambda}266nm$, pulse) treatment. After the laser treatment, the PMMA surface was investigated using a contact angle measuring instrument. The contact angle was decreased with a increase of the surface oxygen content. This result means the surface energy of PMMA was increased by the laser treatment without changing of its bulk characteristics.