• Title/Summary/Keyword: $\mu$ synthesis

Search Result 1,510, Processing Time 0.035 seconds

The Effect of NaCl on the Greening of Etiolated Leaves of Barely (Hordeum vulgare L.) Seedings (NaCl이 황백화된 보리(Hordeum vulgare L.) 잎의 녹화에 미치는 영향)

  • 정화숙;임영진;송승달;노광수;송종석;박강은
    • Journal of Environmental Science International
    • /
    • v.11 no.10
    • /
    • pp.1023-1030
    • /
    • 2002
  • The effects on photosynthesis of NaCl(0, 0.2, 0.4, 0.6, 0.8 or 1.0 M) were examined in etiolated barley seedlings. Chlorophyll(Chl) a, Chl b and carotenoid contents, Chl a fluorescence and quenching coefficients of Chl fluorescence have been determined in the primary leaves of etiolated barley seedlings cultivated under low light(60 $\mu$$m^{-2}\;s^{-1}$). Chl a, b, and carotenoid contents were decreased remarkably in comparison with the control at 0.4 M NaCl. However, the value of Fo and Fv were decreased at 0.6 M NaCl and the ratio of Fv/Fm were deceased at 1.0 M NaCl. Chlorophyll synthesis was seriously inhibited from 0.4 M NaCl, and the photosynthetic electron transport system was inhibited from 0.6 M NaCl. Quantum of photosystem II reaction center was inhibited at 1.0 M NaCl. The effects of NaCl on the Chl content were raised in a 6 hrs, but the effects of NaCl on the value of Fo, Fv and Fv/Fm were raised in 30 hrs. The value of qP was decreased in comparison with the control at all concentrations, but there was a small change in the value qE. These results provide evidence that NaCl inhibited effects of various concentration of NaCl were inhibited quinone redox, however, proton gradient between thylakoid membranes was little damaged.

Inhibitory Effect of Galangin from Alpinia officinarum on Lipopolysaccharide-induced Nitric Oxide Synthesis in RAW 264.7 macrophages (고량강으로부터 분리된 galangin의 RAW 264.7 세포주에서 LPS로 유도된 nitric oxide 생성 저해활성)

  • Lee, Hwa Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.4
    • /
    • pp.511-515
    • /
    • 2014
  • In a screen for plant-derived inhibitors of nitric oxide (NO) production in lipopolysaccharide (LPS)-activated RAW 264.7 macrophage cells, a flavonol isolated from the chloroform extract of Alpinia officinarum was isolated. The structure of the flavonol was found to be 3,5,7-trihydroxy-2-phenylchromen-4-one (galangin, GLG) by using spectroscopy. GLG exhibited an inhibitory effect ($IC_{50}$ value: $26.8{\mu}M$) on NO production in LPS-stimulated RAW 264.7 murine macrophage cells. Moreover, GLG suppressed expressions of inducible nitric oxide synthase (iNOS) protein and mRNA in a dose-dependent manner.

A STUDY ON THE RELATIONSHIP BETWEEN PLASMA CHARACTERISTICS AND FILM PROPERTIES FOR MgO BY PULSED DC MAGNETRON SPUTTERING

  • Nam, Kyung H.;Chung, Yun M.;Han, Jeon G.
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.35-35
    • /
    • 2001
  • agnesium Oxide (MgO) with a NaCI structure is well known to exhibit high secondary electron emission, excellent high temperature chemical stability, high thermal conductance and electrical insulating properties. For these reason MgO films have been widely used for a buffer layer of high $T_c$ superconducting and a protective layer for AC-plasma display panels to improve discharge characteristics and panel lifetime. Up to now MgO films have been synthesized by lE-beam evaporation, Molecular Beam Epitaxy (MBE) and Metalorganic Chemical Vapor Deposition (MOCVD), however there have been some limitations such as low film density and micro-cracks in films. Therefore magnetron sputtering process were emerged as predominant method to synthesis high density MgO films. In previous works, we designed and manufactured unbalanced magnetron source with high power density for the deposition of high quality MgO films. The magnetron discharges were sustained at the pressure of O.lmtorr with power density of $110W/\textrm{cm}^2$ and the maximum deposition rate was measured at $2.8\mu\textrm{m}/min$ for Cu films. In this study, the syntheses of MgO films were carried out by unbalanced magnetron sputtering with various $O_2$ partial pressure and specially target power densities, duty cycles and frequency using pulsed DC power supply. And also we investigated the plasma states with various $O_2$ partial pressure and pulsed DC conditions by Optical Emission Spectroscopy (OES). In order to confirm the relationships between plasma states and film properties such as microstructure and secondary electron emission coefficient were analyzed by X-Ray Diffraction(XRD), Transmission Electron Microscopy(TEM) and ${\gamma}-Focused$ Ion Beam (${\gamma}-FIB$).

  • PDF

Inhibitory Effects on Melanin Production of Demethylsuberosin Isolated from Angelica gigas Nakai (참당귀로부터 분리한 Demethylsuberosin의 멜라닌 생성 억제 효과)

  • Kim, You Ah;Park, Sung Ha;Kim, Bo Yun;Kim, A Hyun;Park, Byoung Jun;Kim, Jin Jun
    • Korean Journal of Pharmacognosy
    • /
    • v.45 no.3
    • /
    • pp.209-213
    • /
    • 2014
  • The anti-melanogenic substance was isolated from the root of Angelica gigas Nakai by silica gel column chromatography, preparative HPLC and TLC. As a result of the structure analysis by mass, $^1H$-NMR, and $^{13}C$-NMR spectrometry, the compound was identified as demethylsuberosin. Demethylsuberosin reduced melanin contents of B16F1 melanoma cells in a dose-dependent manner and decreased to about 74% at a concentration $5{\mu}g/ml$. Demethylsuberosin inhibited the expression in microphthalmia associated transcription factor (MITF), tyrosinase, tyrosinase related protein-1 (TRP-1), and tyrosinase related protein-2 (TRP-2) in melanocytes. These results suggest that the whitening activity of demethylsuberosin may be due to the inhibition of the melanin synthesis by down-regulation of MITF, tyrosinase, TRP-1 and TRP-2 expression. Thus, our results provide evidence that demethylsuberosin might be useful as a potential skin-whitening agent.

Preparation and Characterization of Carbon Nanofiber from Liquid Phase Carbon Source (액상법에 의한 Carbon Nanofiber 제조 및 특성 분석)

  • Lee, Won-Woo;Shin, Chae-Ho;Park, Han-Sung;Choi, Young-Min;Ryu, Beyong-Hwan
    • Korean Journal of Materials Research
    • /
    • v.18 no.10
    • /
    • pp.564-570
    • /
    • 2008
  • Nanostructured carbon materials have been found to have applications in fuel cell electrodes, field emitters, electronic devices, sensors and electromagnetic absorbers, etc. Especially, the CNF (carbon nanofiber) can be expected to play an important role in catalyst supporters for fuel cell electrodes and chemical reactions. In this study, we synthesized CNF from a liquid phase carbon source by a solvothermal method. In addition, we studied the parameters for the preparation of CNF by controlling heating and cooling rates, synthesis temperature and time. We characterized the CNF by SEM/TEM, XRD, Raman spectroscopy and EDS. We found that the heating and cooling rate have strong effects on the CNF formation and growth. We were able to prepare the best CNF at the heating rate of $10^{\circ}$/min, at $450^{\circ}$ for 60 minutes, and at the cooling rate of $4^{\circ}$/min. As a result of Raman spectra, we found that the sample showed two characteristic Raman bands at ${\sim}1350cm^{-1}$ (D band) and ${\sim}1600cm^{-1}$ (G band). The G band indicates the original graphite feature, but the D band has been explained as a disorder feature of the carbon structure. The diameter and length of the CNF was about $15{\sim}20nm$, and over $1{\mu}$, respectively.

ANTI-INFLAMMATORY EFFECTS OF PPARγ ON HUMAN DENTAL PULP CELLS (치수세포에서 PPARγ의 항 염증작용에 관한 연구)

  • Kim, Jeong-Hee
    • Restorative Dentistry and Endodontics
    • /
    • v.31 no.3
    • /
    • pp.203-214
    • /
    • 2006
  • Dental pulp is a loose, mesenchymal tissue almost entirely enclosed in the dentin. It consists of cells, ground substance, and neural and vascular supplies. Damage to the dental pulp by mechanical, chemical, thermal, and microbial irritants can provoke various types of inflammatory response. Pulpal inflammation leads to the tissue degradation, which is mediated in part by Matrix metalloproteinase leads to accelerate extracellular matrix degradation with pathological pathway We have now investigated the induction of MMPs and inflammatory cytokines by Lipopolysaccharide (LPS) control of inflammatory mediators by peroxisome proliferator-activated receptors (PPARs). Human dental pulp cells exposed to various concentrations of LPS ($1-10{\mu}g/ml$) revealed elevated levels of MMP-2 and MMP-9 at 24 hrs of culture. LPS also stimulated the production of ICAM-1, VCAM-1, $IL-1{\beta},\;and\;TNF-{\alpha}$. Adenovirus $PPAR{\gamma}\;(Ad/PPAR{\gamma})\;and\;PPAR{\gamma}$ agonist rosiglitazone reduced the synthesis of MMPs, adhesion molecules and pro-inflammatory cytokines. The inhibitory effect of $Ad/PPAR{\gamma}$ was higher than that of $PPAR{\gamma}$ agonist. These result offer new insights in regard to the anti-inflammatory potential of $PPAR{\gamma}$ in human dental pulp cell.

Effects of Processing Parameters on the Fabrication of in-situ Al/TiC Composites by Thermally Activated Combustion Reaction Process in an Aluminium Melt using Al-TiO2-C Powder Mixtures (알루미늄 용탕에서 Al-TiO2-C의 연소합성반응에 의한 in-situ Al/TiC 복합재료의 제조에 미치는 공정변수의 영향)

  • Kim, Hwa-Jung;Lee, Jung-Moo;Cho, Young-Hee;Kim, Jong-Jin;Kim, Su-Hyeon;Lee, Jae-Chul
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.9
    • /
    • pp.677-684
    • /
    • 2012
  • A feasible way to fabricate in-situ Al/TiC composites was investigated. An elemental mixture of $Al-TiO_2-C$ pellet was directly added into an Al melt at $800-920^{\circ}C$ to form TiC by self-combustion reaction. The addition of CuO initiates the self-combustion reaction to form TiC in $1-2{\mu}m$ at the melt temperature above $850^{\circ}C$. Besides the CuO addition, a diluent element of excess Al plays a significant role in the TiC formation by forming a precursor phase, $Al_3Ti$. Processing parameters such as CuO content, the amount of excess Al and the melt temperature, have affected the combustion reaction and formation of TiC, and their influences on the microstructures of in-situ Al/TiC composites are examined.

A Divalent Immunotoxin Formed by the Disulfide Bond between Hinge Regions of Fab Domain

  • Choe, Seong Hyeok;Kim, Ji Eun;Lee, Yong Chan;Jang, Yeong Ju;Choe, Mu Hyeon
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.12
    • /
    • pp.1361-1365
    • /
    • 2001
  • Recombinant immunotoxins are hybrid cytotoxic proteins designed to selectively kill cancer cells. A divalent immunotoxins, [B3(FabH1)-PE38]2, was constructed by recombining Fab domain of B3 antibody as a cell-targeting domain and Pseudo monas exotoxin A (PE) as a cytotoxic domain. Monoclonal antibody, B3, is the murine antibody (IgG1k) directed against Lewis Y-related carbohydrate antigens, which are abundant on the surface of many carcinomas. Fab fragment of this antibody was used in this study with the modified hinge sequence where last two cysteines out of three were mutated to serine. PE is a 66 kDa bacterial toxin that kills eukaryotic cells by inhibiting protein synthesis with ADP ribosylation of ribosomal elongation factor 2 (EF2). Fc region of B3 antibody was substituted with the truncated form of PE (38 kDa, PE38) on DNA level. [B3(FabH1)-PE38]2 was formed by disulfide bond between cysteines in the modified hinge region of B3(FabH1)-PE38. Each polypeptide for recombinant immunotoxins was overexpressed in Escherichia coli and collected as inclusion bodies. Each inclusion body was solubilized and refolded, and cytotoxic effects were measured. Divalent immunotoxins, [B3(FabH1)-PE38]2, had ID50 values of about 10 ng/mL on A431 cell lines and about 4 ng/mL on CRL1739 cell lines. Control immunotoxins, B3(scFv)-PE40, had ID50 values of about 28 ng/mL on A431 cell lines and about 41 ng/mL on CRL1739 cell lines. Divalent immunotoxins, [B3(FabH1)-PE38]2, had higher cytotoxic effects than B3(scFv)-PE40 control immunotoxins.

Anti-Diabetic Effects of DA-11004, a Synthetic IDPc Inhibitor in High Fat High Sucrose Diet-Fed C57BL/6J Mice

  • Shin, Chang-Yell;Jung, Mi-Young;Lee, In-Ki;Son, Mi-Won;Kim, Dong-Sung;Lim, Joong-In;Kim, Soon-Hoe;Yoo, Moo-Hi;Huh, Tae-Lin;Sohn, Young-Taek;Kim, Won-Bae
    • Archives of Pharmacal Research
    • /
    • v.27 no.1
    • /
    • pp.48-52
    • /
    • 2004
  • DA-11004 is a synthetic, potent NADP-dependent isocitrate dehydrogenase (IDPc) inhibitor where $IC_{50}$ for IDPc is 1.49 $\mu$M. The purpose of this study was to evaluate the effects of DA-11004 on the high fat high sucrose (HF)-induced obesity in male C57BL/6J mice. After completing a 8-week period of experimentation, the mice were sacrificed 1hr after the last DA-11004 treatment and their blood, liver, and adipose tissues (epididymal and retroperitoneal fat)were collected. There was a significant difference in the pattern of increasing body weight between the HF control and the DA-11004 group. In the DA-11004 (100 mg/kg) treated group the increase in body weight significantly declined and a content of epididymal fat and retroperitoneal fat was also significantly decreased as opposed to the HF control. DA-11004 (100 mg/kg) inhibited the IDPc activity, and thus, NADPH levels in plasma and the levels of free fatty acid (FFA) or glucose in plasma were less than the levels of the HF control group. In conclusion, DA-11004 inhibited the fatty acid synthesis in adipose tissues via IDPc inhibition, and it decreased the plasma glucose levels and FFA in HF diet-induced obesity of C57BL/6J mice.

Synthesis of $^{99m} Tc$-tricarbonyl Precursors for Labeling of Bioactive Molecules

  • Jang, Beom-Su;Kim, Yong-Mi;Cho, Sang-Mu;Shin, Byung-Chul;Park, Sun-Ju;Hong, Young-Don;Gwon, Hui-Jeong;Park, Kyung-Bae;Yun, Hyo-In
    • Nuclear Engineering and Technology
    • /
    • v.34 no.2
    • /
    • pp.146-153
    • /
    • 2002
  • To radiolabel bioactive molecules, we synthesized $^{99m}$Tc-tricarbonyl precursor, [$^{99m}$Tc(CO)$_3$($H_2O$)$_3$]$^{+}$ with a low oxidation state ( I ). The [$^{99m}$Tc(CO)$_3$($H_2O$)$_3$]$^{+}$ was prepared by low pressure carbonylation (1 atm of CO) of [$^{99m}$Tc $O_4$)]$^{[-10]}$ in the presence of NaB $H_4$ resulting in higher than 98% of labeling yield and stability up to 8 hrs. We evaluated the characteristics of $^{99m}$Tc- tricarbonyl labeled bioactive molecules by carrying out in vitro and in vitro study. Prepared [$^{99m}$Tc(CO)$_3$($H_2O$)$_3$]$^{+}$ was then reacted with some ligands of significance in modem diagnostic nuclear medicine and some amino acids. Labeling yields were checked by HPLC and found to be usually high, excluding $^{99m}$Tc-tricarbonyl-MDP, -EDTMP and -mIBG. And the biodistribution properties of $^{99m}$Tc-tricarbonyl complexes applied in rabbit showed different appearance comparing with that of the $^{99m}$Tc-labeling by conventional means. From these results, we conclude that [$^{99m}$Tc(CO)$_3$($H_2O$)$_3$]$^{+}$ is a potential precursor for development of radiopharmaceuticals, especially for labeling of biomolecules.