• Title/Summary/Keyword: $\gamma$-amino butyric acid (GABA)

Search Result 44, Processing Time 0.02 seconds

The Effect of Neuroactive Compounds on Settlement of Pacific Oyster, Crassostrea gigas Pediveliger Larvae (굴 Crassostrea gigas 부착기 유생의 부착에 미치는 신경전달물질종의 영향)

  • Hur, Young Baek;Cho, Kyu Tae;Byun, Soon Gyu;Jeon, Chang Young;Cho, Kee Chae
    • The Korean Journal of Malacology
    • /
    • v.29 no.2
    • /
    • pp.139-146
    • /
    • 2013
  • We determined the effects of neuroactive compounds known as synthetic larval settlement inducers on the settlement of the Pacific oyster C. gigas pediveliger on the larval collector. Six types of the inducers, serotonin (5-HT), ${\gamma}$-amino butyric acid (GABA), L-3,4-dihydroxyphenylalanine (L-DOPA), norepinephrine, epinephrine and methyl bromide (MB) were tested. All the chemicals induced larval settlement, MB being the most effective with settlement rate of $42.7{\pm}2.7%$, followed by GABA ($35.4{\pm}2.0%$), 5-HT ($29.1{\pm}2.2%$), L-DOPA ($19.2{\pm}2.1%$), epinephrine ($15.2{\pm}0.9%$), and norepinephrine ($11.0{\pm}1.2%$). The chemicals ${\gamma}$-amino butyric acid and methyl bromide were also better in terms of settled density on the collector with their respective density of $1.97{\pm}1.42$ and $2.37{\pm}1.86\;ind/cm^2$, reminiscent of being most effective candidates for a larval settlement inducer in the oyster hatchery.

Production of γ-amino Butyric Acid by Lactic Acid Bacteria in Skim Milk (탈지방우유에서 가바생성 유산균 배양을 통한 가바생성 연구)

  • Cha, Jin Young;Kim, Young Rok;Beck, Bo Ram;Park, Ji Hun;Hwang, Cher Won;Do, Hyung Ki
    • Journal of Life Science
    • /
    • v.28 no.2
    • /
    • pp.223-228
    • /
    • 2018
  • Lactic acid bacteria were isolated from a variety of fermented seafoods and sea creatures from the East Sea Rim, Korea and were screened for ${\gamma}-amino$ butyric acid-producing (GABA) activity. Through a 16S rRNA sequence analysis, the bacteria of interest, which were GABA-positive on the thin-layer chromatography analysis, were recognized as three isolates of Lactobacillus (Lb.) brevis and one isolate of Lactococcus (Lc.) lactis. Lb. brevis FSFL0004 and FSFL0005 were isolated from fermented anglerfish and Lb. brevis FSFL0036 was derived from salted cutlass fish. The Lc. lactis strain FGL0007 was isolated from the gut of a brown sole flounder. According to HPLC analysis, the GABA contents produced by FSFL0004, FSFL0005, FSFL0036 and FGL0007 were equivalent to $10,754.37{\mu}g/ml$, $13,082.79{\mu}g/ml$, $12,290.19{\mu}g/ml$, and $45.07{\mu}g/ml$ respectively in 1% monosodium glutamate-supplemented methionyl-tRNA synthetase (MRS) broth. The four strains were inoculated in skim milk with 1% monosodium glutamate to commercialize the strains as starter cultures for GABA-enriched dairy products, and TLC results displayed the production of ${\gamma}-amino$ butyric acid by all four strains in the adaptation media. Lc. lactis FGL0007 demonstrated the greatest GABA production ($431.42{\mu}g/ml$) by HPLC analysis. The GABA production by lactic acid bacteria strains in the skim milk demonstrated in the present study may be helpful for the production of GABA-enriched dairy products.

Stress Relaxation and Sleep Induction Effect of Fermented Sea Tangle Saccharina japonica and Oyster Crassostrea gigas Powder (굴(Crassostrea gigas)·다시마(Saccharina japonica) 발효 분말의 스트레스 완화 및 수면 유도 효과)

  • Woo, Nam-Sik;Seo, Yong Bae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.46 no.6
    • /
    • pp.702-707
    • /
    • 2013
  • Sleep is an essential biological process of which the underlying regulatory mechanisms involve numerous anatomical structures and biochemical substances that can be compromised by stress and the immune system. Gamma aminobutyric acid (GABA) is the main inhibitory neurotransmitter of the central nervous system (CNS). It is well established that activation of $GABA_A$ receptors promotes sleep. L. brevis BJ20 fermentation of sea tangle and oysters resulted in stress reduction and sleep inducing effects. This is the first study to report that GABA has the ability to induce sleep related hormones in mice; therefore, it has potential use as a natural sleep aid. These results suggested that sea tangle and oysters fermented by L. brevis BJ20 can be used as potential agents for stress reduction and sleep promotion.

Effects of Lactobacillus brevis BJ20 Fermentation on the Antioxidant and Antiinflammatory Activities of Sea Tangle Saccharina japonica and oyster Crassostrea gigas (Lactobacillus brevis BJ20를 이용한 굴(Crassostrea gigas).다시마(Saccharina japonica) 발효 분말의 항산화 및 항염증 활성 효과)

  • Kang, Young Mi;Woo, Nam-Sik;Seo, Yong Bae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.46 no.4
    • /
    • pp.359-364
    • /
    • 2013
  • Inordinate stress causes disorders of various systems in humans and activates defense mechanisms to maintain homeostasis in the body. Sleep is a vital, highly organized process regulated by complex systems of neuronal networks and neurotransmitters. Sleep is an essential biological process whose underlying regulating involves numerous anatomical structures and biochemical substances that can be compromised by stress and by the immune system. Gamma-amino butyric acid (GABA) is the main inhibitory neurotransmitter of the central nervous system, and activation of GABAA receptors is known to favor sleep. This study was conducted to evaluate the possible application of Lactobacillus brevis BJ20 fermentation to improve the functional qualities of sea tangle Saccharina japonica and oyster Crassostrea gigas. Antioxidant activity was determined by assaying levels of radical scavenging activity against 1,1-diphenyl-2-picrylhydrazyl (DPPH) and superoxide. L. brevis BJ20 fermentation of sea tangle and oyster enhanced both antioxidant and antiinflammatory activities. These results suggested that L. brevis BJ20 fermented sea tangle and oyster could be used for alleviation of stress and to promote sleep.

Increased Production of γ-Aminobutyric Acid from Brewer's Spent Grain through Bacillus Fermentation

  • Tao Kim;Sojeong Heo;Hong-Eun Na;Gawon Lee;Jong-Hoon Lee;Ji-Yeon Kim;Do-Won Jeong
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.4
    • /
    • pp.527-532
    • /
    • 2023
  • Brewer's spent grain (BSG) is a waste product of the beer industry, and γ-aminobutyric acid (GABA) is a physiologically active substance important for brain and neuron physiology. In this study, we used the bacterial strains Bacillus velezensis DMB06 and B. licheniformis 0DA23-1, respectively, to ferment BSG and produce GABA. The GABA biosynthesis pathways were identified through genomic analysis of the genomes of both strains. We then inoculated the strains into BSG to determine changes in pH, acidity, reducing sugar content, amino-type nitrogen content, and GABA production, which was approximately doubled in BSG inoculated with Bacillus compared to that in uninoculated BSG; however, no significant difference was observed in GABA production between the two bacterial strains. These results provide the experimental basis for expanding the use of BSG by demonstrating the potential gain in increasing GABA production from a waste resource.

Effect of schizandra berry dregs and rice bran treatment on γ-aminobutyric acid (GABA) content enhancement in Pleurotus ostreatus (오미자박과 미강 첨가배지가 느타리버섯 자실체의 γ-aminobutyric acid(GABA) 함량에 미치는 효과)

  • Jeoung, Yun-Kyeoung;Kim, Jeong-Han;Baek, Il-Sun;Kang, Young Ju;Chi, Jeong-Hyun
    • Journal of Mushroom
    • /
    • v.15 no.2
    • /
    • pp.88-93
    • /
    • 2017
  • This study was carried out to establish a cultivation technique for increasing the ${\gamma}$-aminobutyric acid (GABA) content in the fruit body of mushrooms by adding processed by-products. For the oyster mushroom 'Heucktari', addition of green tea powder, sea tangle powder, and green tea dregs resulted in very poor primordia formation, fruit body growth, and increased GABA. However, addition of 10% schizandra berry dregs and 1% rice bran to the basal substrate induced 100% and 10% increases, in GABA content in the fruit bodies compared to the control treatment without by-product, respectively. In addition, fruit body growth and primordia formation were greatly increased by these treatments. Therefore, GABA content was increased when the substrate was prepared by mixing an appropriate amount of schizandra berry dregs and rice bran.

Immediate Decrease in γ-AminoButyric Acid after Caffeine Intake in Adolescents: a Preliminary MRS Study

  • Hahn, Sanghyun;Kim, Yun Ho;Seo, Hyung Suk
    • Investigative Magnetic Resonance Imaging
    • /
    • v.21 no.2
    • /
    • pp.102-105
    • /
    • 2017
  • In adolescents, sleep deprivation problem is getting worse, and increased caffeine consumption is considered to relieve the stress caused by sleep deprivation and academic burden. In this study, immediate neurologic effects of caffeine intake on adolescents were evaluated in three high school students using the ${\gamma}-aminobutyric$ acid (GABA)/creatine ratio on magnetic resonance spectroscopy (MRS). MEGA-PRESS MRS and TE 135 ms single voxel MRS were performed in the anterior cingulate cortex before and after drinking a cup of coffee, which contained 104 mg of caffeine. GABA and creatine were measured on LCModel 6.3, respectively. In all three students, GABA/creatine ratios were decreased after caffeine intake. The GABA/creatine ratios obtained before caffeine intake were decreased after caffeine intake in all the three adolescents. In this preliminary study, caffeine intake caused an immediate decrease in the GABA/creatine ratio in the brain and it may be related to the neurologic effects of caffeine on an adolescent's brain.

Effects of Germination on Fatty Acid and Free Amino Acid Profiles of Brown Rice 'Keunnun'

  • Choi, Induck;Suh, Sae-Jung;Kim, Jae-Hyun;Kim, Sun-Lim
    • Food Science and Biotechnology
    • /
    • v.18 no.3
    • /
    • pp.799-802
    • /
    • 2009
  • The effect of germination on hydration and germination properties, and on the changes of fatty acids and amino acids profiles of a brown rice 'Keunnun' (KN) with a large embryo was compared to 'Ilpumbyeo' (IP) with a normal embryo. A rapid germination up to 24 hr was observed in both brown rice cultivars, afterward decreased with germination time. At 60 hr, the KN ($86.0{\pm}4.24%$) showed slightly lower germination capability than the IP ($97.0{\pm}1.41%$). Lower water uptake during germination was also found in the KN ($1.22{\pm}0.02\;g$) compared to the IP ($1.59{\pm}0.05\;g$). Major fatty acids were palmitic acid, oleic acid, and linoleic acid accounting for more than 95% of total fatty acids. The most abundant amino acid in both types was oleic acid, which was decreased during germination, whereas palmitic and linoleic acids were increased. Eight amino acids were detected, and a remarkable increase in ${\gamma}-amino$ butyric acid (GABA) during germination was observed. The KN was characterized with higher tasty amino acids of aspartic acid, glutamic acid, glycine, and alanine.

Methanol Extract of Zizyphi Spinosi Semen Augments Pentobarbital-Induced Sleep through the Modification of GABAergic Systems

  • Hu, Zhenzhen;Kim, Chung-Soo;Oh, Eun-Hye;Lee, Mi-Kyung;Eun, Jae-Soon;Hong, Jin-Tae;Oh, Ki-Wan
    • Natural Product Sciences
    • /
    • v.18 no.2
    • /
    • pp.67-75
    • /
    • 2012
  • Zizyphi Spinosi Semen (ZSS) have been widely used for the treatment of insomnia in Asia. This experiment was performed to investigate whether methanol extract of ZSS (MEZSS) has hypnotic effects through the ${\gamma}$-amino butyric acid (GABA)ergic systems. MEZSS inhibited the locomotor activity. MEZSS enhanced pentobarbital-induced sleep behaviors. However, MEZSS itself did not induce sleep at higher dose, similar to muscimol. On the other hand, both pentobarbital and MEZSS increased the non rapid eye move (NREM) sleep, especially reducing the -wave electroencephalogram (EEG) activity in REM sleep. MEZSS showed similar effects with muscimol on potentiating chloride influx induced by pentobarbital. MEZSS significantly increased GABAA receptors ${\gamma}$-subunit expression and slightly decreased ${\beta}$-subunit expression in hypothalamus and thalamus, showing that subunit-expression was similar to diazepam. In addition, MEZSS enhanced the expression of glutamic acid decarboxylase (GAD). In conclusion, it is suggested that MEZSS might augment pentobarbital-induced sleep behaviors through the modification of GABAergic systems.

Electrically Stimulated Relaxation is not Mediated by GABA in Cat Lower Esophageal Sphincter Muscle

  • Park Sun-Young;Shin Chang-Yell;Song Hyun-Ju;Min Young-Sil;La Hyen-O;Lee Jun-Woo;Kim Do-Young;Je Hyun-Dong;Sohn Uy-Dong
    • Archives of Pharmacal Research
    • /
    • v.29 no.5
    • /
    • pp.400-404
    • /
    • 2006
  • This study examined the effect of Gamma-Amino butyric acid (GABA) and selective GABA receptor related drugs on the electrically stimulated relaxation in the lower esophageal sphincter muscle (LES) of a cat. Tetrodotoxin $(10^{-6}\;M)$ suppressed the electrically stimulated (0.5-5 Hz) relaxation of the LES. However, guanethidine $(10^{-6}\;M)$ and atropine $(10^{-6}\;M)$ had no effect indicating that the relaxations were neurally mediated via the nonadrenergic and noncholinergic (NANC) pathways. NG-nitro-L-arginine methyl ester ($10^{-4}M$, L-NAME) also inhibited the relaxant response but did not completely abolish the electrically stimulated relaxation with 60% inhibition, which suggests the involvement of nitric oxide as an inhibitory transmitter. This study examined the role of GABA, an inhibitory neurotransmitter, on neurally mediated LES relaxation. GABA ($10^{-3}-10^{-5}M$, non selective receptor agonist), muscimol ($10^{-3}-10^{-5}M$, GABA-A agonist), and baclofen ($10^{-3}-10^{-5}M$, GABA-B agonist) had no significant effect on the electrically stimulated relaxation. Moreover, bicuculline ($10^{-5}M$, GABA-A antagonist) and phaclofen ($10^{-5}M$, GABA-B antagonist) had no inhibitory effect on the electrically stimulated relaxation. This suggests that GABA and the GABA receptor are not involved in the electrically stimulated NANC relaxation in the cat LES.