• Title/Summary/Keyword: $\beta$-lactamase gene

Search Result 71, Processing Time 0.028 seconds

Segregational Instability of a Recombinant Plasmid pDML6 in Streptomyces lividans

  • LEE, JUNG HYUN;JAE DEOG JANG;KYE JOON LEE
    • Journal of Microbiology and Biotechnology
    • /
    • v.2 no.2
    • /
    • pp.129-134
    • /
    • 1992
  • Segregational instability of a recombinant plasmid, pDML6, encoding extracellular $\beta$-lactamase in Streptomyces lividans PD6 was characterized by growth kinetic analysis. The quantitative determination of the plasmid harbored in the mycelia was evaluated with mycelia fragmented mechanically, and also with colonies regenerated from protoplasts. Conditions for the formation of protoplasts and regeneration of protoplasts were established. The maximal specific growth rates of the host strain and the plasmid-harboring strain in a chemically defined medium without selection pressure were the same. The probability of plasmid loss from the harbouring cells was higher at higher growth rates. Mathematical models for the prediction of cell growth, substrate uptake, and accumulation of the cloned gene product were developed.

  • PDF

Genetic Diversity of Metallo-β-lactamase Genes of Chryseobacterium indologenes Isolates from Korea

  • Yum, Jong Hwa
    • Biomedical Science Letters
    • /
    • v.25 no.3
    • /
    • pp.275-281
    • /
    • 2019
  • This study was performed to characterize the chromosomal metallo-${\beta}$-lactamases (MBLs) of Chryseobacterium indologenes isolated from Korea and to propose a clustering method of IND MBLs based on their amino acid similarities. Chromosomal MBL genes were amplified by PCR from 31 clinical isolates of E. indologenes. Nucleotide sequencing was performed by the dideoxy chain termination method using these PCR products. Antimicrobial susceptibilities were determined by the agar dilution method. PCR experiments showed that all 31 E. indologenes isolates contained all $bla_{IND}$ genes. DNA sequence analysis revealed that E. indologenes isolates possessed ten types of $bla_{IND}$ gene, including seven novel variants ($bla_{IND-8}$ to $bla_{IND-14}$). The most common combination of MBL was IND-2 (n = 18). Minimum inhibitory concentrations of imipenem and meropenem for the isolates harboring novel IND MBLs were ${\geq}16{\mu}g/mL$. IND MBLs were grouped in three clusters, based on amino acid similarities.

A Novel Esterase from Paenibacillus sp. PBS-2 Is a New Member of the ${\beta}$-Lactamase Belonging to the Family VIII Lipases/Esterases

  • Kim, Young-Ok;Park, In-Suk;Nam, Bo-Hye;Kim, Dong-Gyun;Jee, Young-Ju;Lee, Sang-Jun;An, Cheul-Min
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.9
    • /
    • pp.1260-1268
    • /
    • 2014
  • Screening of a gene library from Paenibacillus sp. PBS-2 generated in Escherichia coli led to the identification of a clone with lipolytic activity. Sequence analysis showed an open reading frame encoding a polypeptide of 378 amino acid residues with a predicted molecular mass of 42 kDa. The esterase displayed 69% and 42% identity with the putative ${\beta}$-lactamases from Paenibacillus sp. JDR-2 and Clostridium sp. BNL1100, respectively. The esterase contained a Ser-x-x-Lys motif that is conserved among all ${\beta}$-lactamases found to date. The protein PBS-2 was produced in both soluble and insoluble forms when E. coli cells harboring the gene were cultured at $18^{\circ}C$. The enzyme is a serine protein and was active against p-nitrophenyl esters of $C_2$, $C_4$, $C_8$, and $C_{10}$. The optimum pH and temperature for enzyme activity were pH 9.0 and $30^{\circ}C$, respectively. Relative activity of 55% remained at up to $5^{\circ}C$ with an activation energy of 5.84 kcal/mol, which indicates that the enzyme is cold-adapted. Enzyme activity was inhibited by $Cd^{2+}$, $Cu^{2+}$, and $Hg^{2+}$ ions. As expected for a serine esterase, activity was inhibited by phenylmethylsulfonyl fluoride. The enzyme was remarkably active and stable in the presence of commercial detergents and organic solvents. This cold-adapted esterase has potential as a biocatalyst and detergent additive for use at low temperatures.

The Characteristics of Imipenem-Resistant Bacteria Isolated from One Patient (한 환자에게서 분리된 Imipenem 내성세균들의 특성)

  • Park, Chul;Lee, Hyeok-Jae;Seo, Min-Young
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.49 no.4
    • /
    • pp.413-419
    • /
    • 2017
  • Four imipenem-resistant bacteria were isolated from the clinical specimens of a patient with pneumonia. To identify the isolates, we used the GN card of Vitek II system and performed a phylogenetic analysis based on 16S rRNA gene sequence. The isolates were identified as P. aeruginosa (2 strains), P. monteilii (1 strain), and P. putida (1 strain), and were tested for antibiotic resistance after determining the MIC of imipenem to be $${\geq_-}8{\mu}g/mL$$ using the AST-N225 card of Vitek II system. The imipenem-resistant genotypes were determined using PCR products amplified using specific ${\beta}-Lactamase$ gene primers. The MBL gene was identified in all four isolates. One strain of P. aeruginosa exhibited the VIM and SHV-1 type genes, while the other strain exhibited both VIM and OXA group II genes. According to the antimicrobial susceptibility test, the bacteria were more susceptible to amikacin than other antibiotics. DNA fingerprint analysis using ERIC-PCR to analyze the epidemiological relationship between strains estimated that both the P. aeruginosa isolates were similar, but exhibited different DNA band types. It is uncommon to find four strains of imipenem-resistant bacteria with different DNA band types in a single patient.

Characterization of Extended-Spectrum-$\beta$-Lactamase Genotype TEM, SHV and CTX-M from Clinical Isolates of Klebsiella pneumoniae and Comparison with Antibiotic Susceptibility Test

  • Kim Yun-Tae;Oh Kwang-Seok;Choi Seok-Cheol;Kim Tae-Un
    • Biomedical Science Letters
    • /
    • v.11 no.3
    • /
    • pp.389-396
    • /
    • 2005
  • Resent studies have reported increased isolation of extended-spectrum $\beta-lactamase$ (ESBL) producing strains at several hospital in Korea. We studied to investigate the isolation rates of ESBL strains from clinical isolates of Klebsiella pneumoniae and to characterize differences in types using analyses of genotyping and antibiotic susceptibility test. Antibiotic susceptibility test with confirmation of ESBL by double disk synergy test was performed on the 54 ESBL strains of Klebsiella pneumoniae from a hospital in Busan. Transfer of resistant gene in ESBL strains resistant to 3rd generated antibiotics was confirmed by transconjugation test using E. coli $RG176^{nal(r)}$. blaTEM, blaSHV, blaCTX-M genes were detected by PCR. ESBL producing strains had 100% of resistant rate to ampicillin, azteronam, cefazolin, cefepime and ceftriaxone ($\beta-lactam$ antibiotics). Forty strains of bla TEM$(74\%)$, 41 strains of bla SHV $(76\%)$, 23 strains of bla CTX-M $(43\%)$ were found, respectively. The strains had one or more genes. They had high resistant rates to $\beta-lactam$ antibiotics including cephalosporin. The resistant rates of strains with multiple resistant genes were higher than those of strains with single resistant gene.

  • PDF

Genotypic Detection of Extended-Spectrum β-Lactamase-Producing of Klebsiella pneumoniae (Extended-Spectrum β-Lactamase 생성 Klebsiella pneumoniae 균주의 유전형 검출)

  • Yook, Keun-Dol;Yang, Byoung-Seon;Park, Jin-Sook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.3
    • /
    • pp.1191-1196
    • /
    • 2013
  • Among Gram-negative pathogens in Korea, the incidence of resistance to third generation cephalosporins is becoming an ever-increasing problem. The production of extended-spectrum ${\beta}$-lactamase (ESBL) is the main mechanism of bacterial resistance to a third-generation cephalosporins and monobactams. Accurate identification of the ESBL genes are necessary for surveillance and epidemiological studies of the mode of transmission in the hospital. This study was conducted to detect the genes encoding ESBL of 46 K. penumoniae isolated from Daejeon, Chungnam and Chungbuk regional university hospitals from February to August in 2012. The phenotypes of the isolated specimens were examined according to the combination disc test (CDT) by the Clinical and Laboratory Standards Institute (CLSI). Forty two ESBL producing K. penumoniae isolates could be detected using ceftazidime (CAZ) discs with and without clavulanate (CLA). By CDT, 42 K. pneumoniae strains were confirmed to be ESBL strains. Genotyping was performed by multiplex PCR with type-specific primers. By PCR analysis, TEM gene in 46 strains, SHV gene in 37 strains and CTX-M genes in 14 strains were identified. Ten isolates did carry genes encoding ESBLs of all types TEM, SHV and CTX-M. The multiplex polymerase chain reaction (PCR) analysis was better to detect and differentiate ESBL producing K. penumoniae strains in clinical isolates.

Prevalence and Diversity of MBL Gene-Containing Integrons in Metallo-β-Lactamase (MBL)-Producing Pseudomonas spp. Isolates Disseminated in a Korean Hospital

  • Yum, Jong Hwa
    • Biomedical Science Letters
    • /
    • v.25 no.4
    • /
    • pp.321-330
    • /
    • 2019
  • Carbapenem is recently considered as the last resort of the therapeutics for gram negative bacterial infection. Increasing of organisms producing metallo-β-lactamase (MBL), we have difficulty in choosing the antimicrobial agents. Among 345 clinical isolates of Pseudomonas spp., 61 isolates (17.7%) were positive for the modified imipenem or meropenem-Hodge test and 55 isolates (15.9%) were positive for the imipenem-EDTA + SMA double disk synergy test (DDS). PCR and sequencing of blaVIM-2-allele and blaIMP-1-allele showed that 17 isolates of Pseudomonas aeruginosa, 9 isolates of Pseudomonas taiwnensis and 2 Pseudomonas plecoglossicida had blaVIM-2, and 22 isolates of P. aeruginosa and one Pseudomonas otitidis had blaIMP-6. These MBL genes were all in class 1 integron. The size of class 1 integron with blaVIM-2 ranged from 3.5 kb to 5.5 kb in clinical isolates of Pseudomonas spp. including P. aeruginosa. blaVIM-2 was most often located first in the class 1 integron, sometimes in the second or third position, and these integrons often had aacA4 or aadA1. Strict infection control measures are needed to more effectively prevent further spread of these MBL-producing Pseudomonas spp. In addition, MBL-producing Pseudomonas spp. is expected to continue to spread in various countries and regions.

Characteristics of Klebsiella pneumoniae exposed to serial antibiotic treatments (항생제 노출에 따른 Klebsiella pneumoniae의 내성 특성)

  • Jung, Lae-Seung;Jo, Ara;Kim, Jeongjin;Ahn, Juhee
    • Korean Journal of Microbiology
    • /
    • v.52 no.4
    • /
    • pp.428-436
    • /
    • 2016
  • The emergence of antibiotic-resistant bacteria has been increased and become a public health concern worldwide. Many bacterial infections can be sequentially treated with different types of antibiotics. Thus, this study was designed to evaluate the changes in survival, antibiotic susceptibility, mutant frequency, ${\beta}$-lactamase activity, biofilm formation, and gene expression in Klebsiella pneumoniae after exposure to sequential antibiotic treatments of ciprofloxacin and meropenem. Treatments include control (CON; no addition), 1/2 MIC ciprofloxacin addition (1/2CIP), 2 MIC ciprofloxacin addition (2CIP), initial 1/2 MIC ciprofloxacin addition followed by 1/2 MIC meropenem (8 h-incubation) and 2 MIC ciprofloxacin (16 h-incubation) (1/2CIP-1/2MER-2CIP), initial 1/2 MIC ciprofloxacin addition followed by 1/2 MIC meropenem (8 h-incubation) and 2 MIC meropenem (16 h-incubation) (1/2CIP-1/2MER-2MER), and initial 1/2 MIC ciprofloxacin addition followed by 2 MIC ciprofloxacin(8 h-incubation) and 2 MIC meropenem(16 h-incubation) (1/2CIP-2CIP-2MER). No growth of K. pneumoniae was observed for the 2CIP throughout the incubation period. The numbers of planktonic cells varied with the treatments (7~10 log CFU/ml), while those of biofilm cells were not significantly different among treatments after 24-h incubation, showing approximately 7 log CFU/ml. Among the sequential treatments, the least mutant frequency was observed at the 1/2CIP-1/2MER-2CIP (14%). Compared to the CON, 1/2CIP-2CIP-2MER decreased the sensitivity of K. pneumoniae to piperacillin, cefotaxime, and nalidixic acid. The highest ${\beta}$-lactamase activity was 22 nmol/min/ml for 1/2CIP-1/2MER-2CIP, while the least ${\beta}$-lactamase activity was 6 nmol/min/ml for 1/2CIP-2CIP-2MER. The relative expression levels of multidrug efflux pump-related genes (acrA, acrB, and ramA) were increased more than 2-fold in K. pneumoniae exposed to 1/2CIP-1/2MER-2MER and 1/2CIP-2CIP-2MER. The results suggest that the sequential antibiotic treatments could change the antibiotic resistance profiles in K. pneumoniae.

Detection of Extended-Spectrum β-Lactamase Producing Klebsiella pneumoniae by Multiplex Polymerase Chain Reaction (Multiplex Polymerase Chain Reaction을 이용한 Extended-Spectrum β-Lactamase 생성 Klebsiella pneumoniae 균주의 검출)

  • Yang, Byoung-Seon
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.38 no.3
    • /
    • pp.173-178
    • /
    • 2006
  • The production of extended-spectrum ${\beta}$-lactamases ($ESBL_S$) is the main mechanism of bacterial resistance to third-generation cephalosporins and monobactams, whose prevalence varies depending on the different geographical areas. In the last years it has increased notably to the point of being considered a health problem of great importance. The characterization of the ESBLs producing Klebsiella penumoniae strains present in clinical isolates is time-consuming. I describe here the development of a new system, which consists of a multiplex PCR. I found 51 K. pneumoniae strains to be presumptive strains ESBLs producers by clinical and laboratory standards institute (CLSI) guidelines. The double disc synergy test showed 47 positive K. pneumoniae, which were K. pneumoniae isolates. All ESBLs producing K. pneumoniae strains were resistant to antibiotic amikacin, gentamicin and ciprofloxacin. By multiplex PCR analysis, $bla_{TEM}$ gene in 17 strains 44 $bla_{SHV}$ genes and $bla_{CTX}$ genes in 33 strains were identified. In this study, the multiplex polymerase chain reaction (PCR) assay was a good method to detect and differentiate ESBLs producing K. penumoniae strains in clinical isolates.

  • PDF

In vitro Antimicrobial Combination Therapy in Metallo-β-lactamase Producing Pseudomonas aeruginosa (Metallo-β-lactamase 생성 Pseudomonas aeruginosa의 시험관내 항균제 병합요법에 대한 연구)

  • Hong, Seung-Bok
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.38 no.3
    • /
    • pp.166-172
    • /
    • 2006
  • Metallo-${\beta}$-lactamase (MBL) can hydrolyze all ${\beta}$-lactams except monobactams and frequently coexists with various antibiotic resistance genes such as aminoglycoside resistance, sulfonamide resistance gene, etc. Therefore, the effective antibiotics against infections by these bacteria are markedly limited or can't even be found. We tried to search in-vitro antimicrobial combinations with synergistic effects for a VIM-2 type MBL producing Pseudomonas aeruginosa, isolated from clinical specimen. On the selection of antibiotic combinations with synergistic effects, we performed a one disk synergy test, modified Pestel's method, in agar without aztreonam (AZT). The bacteriostatic synergistic effects of this tests were scored as $S_1$ (by susceptibility pattern in agar without antibiotics), $S_2$ (by the change of susceptibility in agar with or without antibiotics) and $S_3$ ($S_1$ + $S_2$) and was classified into weak (1 point), moderate (2 points) and strong (3 points) by $S_3$ score. Subsequently, we carried out the time-killing curve for the antibiotic combinations with the strong synergistic bacteriostatic effect. One VIM-2 type MBL producing P. aeruginosa confirmed by the PCR showed all resistance against all ${\beta}$-lactams except AZT, aminoglycoside and ciprofloxacin. In the one disk synergy test, this isolate showed a strong bacteriostatic synergistic effect for the antibiotic combination of AZT and piperacillin-tazobactam (PIP-TZP) or AZT and amikacin (AN). On the time-killing curve after six hours of incubation, the colony forming units (CFUs/mL) of this bacteria in the medium broth with both combination antibiotics were decreased to 1/18.7, 1/17.1 of the least CFUs of each single antibiotics. The triple antibiotic combination therapy including AZT, PIP-TZP and AN was shown to be significantly synergistic after 8 hrs of exposure. In a VIM-2 MBL producing P. aeruginosa with susceptibility for AZT, the triple antibiotic combination therapy including AZT, PIP-TZP and AN may be considered as an alternative antibiotics modality against the infection by some MBL type. But the antimicrobial combination therapy for many more MBL producing isolates is essential to know as soon as possible for the selection of effective treatment against the infection by this bacteria.

  • PDF