• Title/Summary/Keyword: $\beta$-catenin

Search Result 265, Processing Time 0.032 seconds

The Decreased Expression of Fbxw7 E3 Ligase Mediated by Cancer Upregulated Gene 2 Confers Cancer Stem Cell-like Phenotypes (CUG2 유전자에 의하여 감소된 FBXW7 E3 ligase 발현이 유사-종양줄기세포 표현형을 유도)

  • Yawut, Natpaphan;Kim, Namuk;Budluang, Phatcharaporn;Cho, Il-Rae;Kaowinn, Sirichat;Koh, Sang Seok;Kang, Ho Young;Chung, Young-Hwa
    • Journal of Life Science
    • /
    • v.32 no.4
    • /
    • pp.271-278
    • /
    • 2022
  • The detailed mechanism by which cancer upregulated gene 2 (CUG2) overexpression induces cancer stem cell-like phenotypes is not fully understood. The downregulation of FBXW7 E3 ligase, a tumor suppressor known for its proteolytic regulation of oncogenic proteins such as cyclin E, c-Myc, Notch, and Yap1, has been frequently reported in several types of tumor tissues, including those in the large intestine, cervix, and stomach. Therefore, we investigated whether FBXW7 is involved in CUG2-induced oncogenesis. In this study, the decreased expression of FBXW7 was examined in human lung adenocarcinoma A549 (A549-CUG2) and human bronchial BEAS-2B cells (BEAS-CUG2) overexpressing CUG2 and compared with control cells stably expressing an empty vector (A549-Vec or BEAS-Vec). Treatment with MG132 (a proteosome inhibitor) prevented the degradation of FBXW7 and Yap1 proteins, which are substrates of the FBXW7 E3 ligase. To address the role of Fbxw7 in the development of cancer stem cell (CSC) phenotypes, we suppressed Fbxw7 protein levels using its siRNA. We observed that decreased levels of FBXW7 enhanced cell migration, invasion, and spheroid size and number in A549-Vec and BEAS-Vec cells. The enforced expression of FBXW7 produced the opposite results in A549-CUG2 and BEAS-CUG2 cells. Furthermore, the downregulation of FBXW7 elevated the activities of EGFR, Akt, and ERK1/2 and upregulated β-catenin, Yap1, and NEK2, while the enforced expression of FBXW7 generated the opposite results. We thus propose that FBXW7 downregulation induced by CUG2 confers CSC-like phenotypes through the upregulation of both the EGFR-ERK1/2 and β-catenin-Yap1-NEK2 signaling pathways.

Selection and Mechanism of Anti-Obesity Agents from Natural Products Based on Anti-Angiogenesis (신생혈관형성억제작용을 기반으로 한 항비만제제의 선별 및 작용기전)

  • Shin, Jin-Hyuk;Lee, Jin-Hee;Kang, Kyeong-Wan;Hwang, Jae-Ho;Han, Kyeong-Ho;Shin, Tai-Sun;Kim, Min-Yong;Kim, Jong-Deog
    • KSBB Journal
    • /
    • v.24 no.2
    • /
    • pp.122-130
    • /
    • 2009
  • Anti-angiogenic mechanism was examined for anti-obesity agents with the extract of P.radix, P.semen, S.hebra and C.furctus through anti-cell adhesion effect and western blot. Cell adhesion molecules, VCAM-1 was supressed with the order of P.radix (0.2 ppm, 125%) > P.semen (0.5 ppm, 100%) > S.hebra (5.0 ppm, 114%) > C. furctus (5.0 ppm, 111.8%), ICAM-1 was inhibited by P.radix (0.25 ppm, 130%) > P.semen (0.5 ppm, 100%) > S.hebra (5.0 ppm, 138%) > C. furctus (5.0 ppm, 66.7%), E-Selectin was also supressed P.radix (0.25 ppm, 100%) > P.semen (1.0 ppm, 128%) > S.hebra (5.0 ppm, 120%) > C. furctus (5.0 ppm, 100.7%). And signal molecules, VE-cadherin was supressed by P.radix and S.hebra, ${\beta}$-catenin was inhibited by P.radix, and Akt was supressed all these 4 kinds of natural products. These P.radix, P.semen, S.hebra and C.furctus were showed the possibility of anti-obesity agents based on anti-angiogenesis.

Menadione Induced Apoptosis in MKN45 Cells via Down-regulation of Survivin (Menadione의 Survivin 하향 조절을 통한 MKN45 세포의 세포사멸 유도 효과)

  • Lee, Min Ho;Kim, Jeongyong;Cho, Yoonjung;Kim, Do Hyun;Yang, Ji Yeong;Kwon, Hye Jin;Park, Min;Woo, Hyun Jun;Kim, Sa-Hyun;Kim, Jong-Bae
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.51 no.1
    • /
    • pp.71-77
    • /
    • 2019
  • Menadione is known as an anti-tumor factor. Many studies have reported the potential anti-cancer role of menadione against a range of cancer cell lines. In this study, the anti-cancer effects of menadione and the underlying molecular signaling involved in apoptosis was investigated in gastric cancer cell lines. The menadione treatment decreased the cell viability of MKN45 gastric cancer cells. The decreased cell viability was attributed to the induction of apoptosis, which was confirmed by the results indicating the activation of caspase-3 and -7 and the cleavage of PARP in Western blotting. The upstream regulatory molecules involved in apoptosis were investigated further and it was discovered that menadione reduced the expression of survivin, an inhibitor of upstream apoptosis proteins. In addition, a transcription factor ${\beta}$-catenin, which is known to regulate survivin expression, was down-regulated by menadione. A previous report showed that menadione inhibited XIAP expression to induce apoptosis and induced G2/M cell cycle arrest in AGS cells. This study elucidated another inhibitory mechanism of menadione against gastric cancer cells in a different cell line. Although further studies will be needed, the inhibitory mechanism demonstrated in this study will help better understand the anti-cancer effects of menadione.

Protective Effect of Korean Ginseng on Cytotoxicity Induced by 2,2',5,5'-Tetrachlorobiphenyl in Human Neuronal SK-N-MC Cells (환경호르몬 2,2',5,5'-Tetrachlorobiphenyl의 신경세포 독성에 대한 인삼의 방어효과)

  • Hwang Sang-Gu;Kim Ji Su;Lee Hyung Chul;Lee Young Chan;Jeong Young Mok;Jeong Woo Yeal;Jeon Byung Hun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.1
    • /
    • pp.172-180
    • /
    • 2002
  • Polychlorinated biphenyls(PCBs) are large scale industrial chemicals which are using in diverse applications. The goal of this study was to determine if exposure to 2,2',5,5'-tetrachlorobiphenyl (PCB 52) leads to an increase in the production of active oxidants, and subsequently promotes apoptosis of neuronal SK-N-MC cells. Reactive oxygen species (ROS) formation was examined in SK-N-MC cells after treatment of PCB 52 by concentrations and incubation times, respectively. It showed that the rate of ROS production in the cells was increased in a does-dependent manner to 45 min, followed by a return towards control levels after 120 min treatment. We also examined the association of PCB-induced apoptosis with the modulation of biomakers of oxidative damage to lipids (malondialdehyde [MDA]) in SK-N-MC cells. Increased MDA was observed in a dose-dependent manner in groups treated with 10, 15, and 20 figJ me of PCB 52 for 24 h. After treatment of PCB 52, the cells did not show any significant change in the rate of Cu/Zn-superoxide dismutase (Cu/Zn-SOD) activity. Whereas, the cells had a two-fold greater rate of change in catalase activity at 20 ㎍/㎖ of PCB 52 for 24 h when compared to control group. Korean Ginseng is one of the most important crude drugs which has been used as a traditional Oriental medicine. We next investigated protective effect of extracts of ginseng on cytotoxicity induced by PCB 52 in SK-N-MC cells. Pretreatment of SK-N-MC cells with 25-200 μg/ml of ginseng were reduced cell death in a dose-dependent manner in PCB 52-treated cells. To examine the sensitivity of beta-catenin to ginseng, the protective effect of a range of ginseng concentrations was examined in SK-N-MC cells treated with PCB 52. The result demonstrated that ginseng efficiently blocked PCB 52 inducible beta-catenin proteolysis in a concentration dependent manner. The ROS formation was also measured in the presences of extract of ginseng and superoxide dismutase (inhibitor of oxygen free radical production). The both SOD (400 U/ml) and ginseng (200 μg/ml) significantly inhibited RDS generation in PCB 52-treated group.

Bone Metabolism and Estrogenic Effect of Phytochemicals (골 대사 및 phytochemicals의 estrogen 효과)

  • Kim, Bokyung;Kim, Mihyang
    • Journal of Life Science
    • /
    • v.28 no.7
    • /
    • pp.874-883
    • /
    • 2018
  • Osteoporosis is a disease that increases the risk of fracture by decreasing the mass and strength of bone. It is caused by imbalance of osteoclast bone formation and osteoclast bone resorption. Bone formation by osteoblast is activated via bone morphogenetic proteins and runt-related transcription factor 2. $Wnt/{\beta}-catenin$ signaling and bone resorption by osteoclast are initiated by the binding of receptor activator of nuclear $factor-{\kappa}B$ ligand and receptor activator of nuclear $factor-{\kappa}B$. Menopausal women are at risk for many diseases due to hormonal imbalances, and osteoporosis is the most common metabolic disorder in 30% of postmenopausal women. When estrogen is deficient, bone resorption of osteoclasts is promoted, and the risk of osteoporosis especially increases in postmenopausal women. Hormone replacement therapy has been widely used to relieve or treat the symptoms of menopausal syndrome. However, long-term administration of hormone therapy has been associated with a high risk of side effects, such as breast cancer, ovarian cancer, and uterine cancer. Recently, phytochemicals have been actively studied as a phytoestrogen, which has an estrogen-like activity to cope with symptoms of menopausal syndrome. Therefore, in this review, we investigated the differentiation mechanism of osteoblast and osteoclast and the role of estrogen and phytoestrogen in bone metabolism in relation to previous studies.

Esculetin Induces Apoptosis through Caspase-3 Activation in Human Leukemia U937 Cells (Esculetin의 caspase-3 활성을 통한 U937 인체 혈구암세포의 세포사멸 유도)

  • Park, Cheol;Hyun, Sook-Kyung;Shin, Woo-Jin;Chung, Kyung-Tae;Choi, Byung-Tae;Kwon, Hyun-Ju;Hwang, Hye-Jin;Kim, Byung-Woo;Park, Dong-Il;Lee, Won-Ho;Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.19 no.2
    • /
    • pp.249-255
    • /
    • 2009
  • Esculetin, a coumarin compound, has been known to inhibit proliferation and induce apoptosis in several types of human cancer cells. However, the molecular mechanisms involved in esculetin-induced apoptosis are still uncharacterized in human leukemia cells. In this study, we have investigated whether esculetin exerts anti-proliferative and apoptotic effects on human leukemia U937 cells. It was found that esculetin could inhibit cell viability in a time-dependent manner, which was associated with the induction of apoptotic cell death such as increased populations of apoptotic- sub G1 phase. Apoptosis of U937 cells by esculetin was associated with an inhibition of Bcl-2/Bax binding activity, formation of tBid, down-regulation of X-linked inhibitor of apoptotic protein (XIAP) expression, and up-regulation of death receptor 4 (DR4) and FasL expression. Esculetin treatment also induced the degradation of ${\beta}$-catenin and DNA fragmentation factor 45/inhibitor of caspase-activated DNase (DFF45/ICAD). Furthermore, a caspase-3 specific inhibitor, z-DEVD-fmk, significantly inhibited sub-G1 phase DNA content, morphological changes and degradation of ${\beta}$-catenin and DEE45/ICAD. These results indicated that a key regulator in esculetin-induced apoptosis was caspase-3 in human leukemia U937 cells.

Recent Natural Products Involved in the Positive Modulation of Melanogenesis (Melanogenesis 양성적 조절 에 관여하는 최근 천연물의 동향)

  • Kim, Moon-Moo
    • Journal of Life Science
    • /
    • v.28 no.6
    • /
    • pp.745-752
    • /
    • 2018
  • Melanogenesis is involved in the pigmentation of the hair, eyes, and skin in living organisms. Various signaling pathways stimulated by ${\alpha}-MSH$, SCF/c-Kit, $Wnt/{\beta}-catenin$, nitric oxide and ultraviolet activate melanocyte, leading to melanin production by tyrosinase, tyrosinase-related protein (TRP)-1, and TRP-2 expressed via the microphthalmia-associated transcription factor (MITF). However, the abnormal regulation of melanogenesis causes dermatological issues such as graying hair and vitiligo. Therefore, the activators that promote melanogenesis are crucial for the prevention of graying hair and the treatment of hypopigmentary disorders. Many melanogenesis stimulators have been studied for the development of novel drugs derived from synthesized compounds and natural products. Here, in addition to providing a description of a common signaling pathway in the melanogenesis of graying hair and the vitiligo process for the development of novel anti-hair graying agents, this article reviews natural herbs and the active ingredients that promote melanin synthesis as a pharmaceutical agent for the treatment of vitiligo. In particular, compounds such as Imatinib and Sugen with a stimulating effect on melanogenesis as a side effect of the drugs, are also introduced. Recent advances in research on natural plant extracts such as Polygonum multiflorum, Rhynchosia Nulubilis, Black oryzasativa, and Orysa sartiva, widely known as traditional and medicinal extracts, are also reviewed.

Enterotoxigenic Bacteroides fragilis-Associated Diseases and Detection (Enterotoxigenic Bacteroides fragilis에 의한 질환과 검출)

  • Gwon, Sun-Yeong;Jang, In-Ho;Rhee, Ki-Jong
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.47 no.4
    • /
    • pp.161-167
    • /
    • 2015
  • These commensal intestinal bacteria can enhance the immune system and aid in nutrient absorption but can also act as opportunistic pathogens. Among these intestinal bacteria, the anaerobic Bacteroides fragilis are divided into enterotoxigenic B. fragilis (ETBF) which secrete the B. fragilis toxin (BFT) and non-enterotoxigenic B. fragilis (NTBF) which do not secrete BFT. ETBF can cause diarrhea and colitis in both humans and livestock but can also be found in asymptomatic individuals. ETBF is predominantly found in patients with inflammatory diarrheal diseases and traveller's diarrhea. Several clinical studies have also reported an increased prevalence of ETBF in human patients with inflammatory bowel disease (IBD), colitis and colorectal cancer. In small animal models (C57BL/6 wild-type mice, germ-free mice, multiple intestinal neoplasia (Min) mice, rabbits and Mongolian gerbils), ETBF have been found to initiate and/or aggravate IBD, colitis and colorectal cancer. BFT induces E-cadherin cleavage in intestinal epithelial cells resulting in loss of epithelial cell integrity. Subsequent activation of the ${\beta}$-catenin pathway leads to increased cellular proliferation. In addition, ETBF causes acute and chronic colitis in wild-type mice as well as enhances tumorigenesis in Min mice via activation of the Stat3/Th17 pathway. Currently, ETBF can be detected using a BFT toxin bioassay and by PCR. Advances in molecular biological techniques such as real-time PCR have allowed both researchers as well as clinicians to rapidly detect ETBF in clinical samples. The emergence of more sensitive techniques will likely advance molecular insight into the role of ETBF in colitis and cancer.

Inhibition of Melanogenesis by Cucurbitacin B from Cucumis sativus L. (오이로부터 분리된 cucurbitacin B의 미백 효능 연구)

  • Chang, Yun-Hee;Choo, Jung-Ha;Lee, So-Young;Kim, Tae-Yoon;Jin, Mu-Hyun;Chang, Min-Youl;Lee, Sang-Hwa;Lee, Cheon-Koo;Park, Sun-Gyoo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.40 no.4
    • /
    • pp.403-412
    • /
    • 2014
  • To develop an effective skin whitening agent for cosmetics, we isolated cucurbitacin B from Cucumis sativus L. which has been used as traditional skin lighting regimen by the bioactivity-guided fractionation, and investigated the inhibitory effects of cucurbitacin B on melanogenesis. At a non-cytotoxic concentration, cucurbitacin B reduced melanin contents of B16F1 melanoma cells in a dose-dependent manner. Cucurbitacin B did not directly inhibit mushroom tyrosinase activity, but it inhibited intracellular tyrosinase activity in a dose-dependent manner. Its inhibitory mechanism on melanin biosynthesis was further assessed, and we found that cucurbitacin B significantly decreased the protein level of tyrosinase, a major melanogenic enzymes and MITF, a master transcriptional factor of melanogenesis. In addition, cucurbitacin B increased the expression of WW domain-containing oxidoreductase (WWOX) which is known to function as tumor repressor and inhibits $Wnt/{\beta}$-catenin pathway. Collectively, these results suggest that cucuritacin B from C. sativus could be used as an active ingredient for skin whitening.

Inhibition of Wntless/GPR177 suppresses gastric tumorigenesis

  • Seo, Jaesung;Kee, Hyun Jung;Choi, Hye Ji;Lee, Jae Eun;Park, Soo-Yeon;Lee, Seung-Hyun;Jeong, Mi-Hyeon;Guk, Garam;Lee, SooYeon;Choi, Kyung-Chul;Choi, Yoon Young;Kim, Hyunki;Noh, Sung Hoon;Yoon, Ho-Geun;Cheong, Jae-Ho
    • BMB Reports
    • /
    • v.51 no.5
    • /
    • pp.255-260
    • /
    • 2018
  • Wntless/GPR177 functions as WNT ligand carrier protein and activator of $WNT/{\beta}$-catenin signaling, however, its molecular role in gastric cancer (GC) has remained elusive. We investigated the role of GPR177 in gastric tumorigenesis and provided the therapeutic potential of a clinical development of anti-GPR177 monoclonal antibodies. GPR177 mRNA expression was assessed in GC transcriptome data sets (GSE15459, n = 184; GSE66229, n = 300); protein expression was assessed in independent patient tumor tissues (Yonsei TMA, n = 909). GPR177 expression were associated with unfavorable prognosis [log-rank test, GSE15459 (P = 0.00736), GSE66229 (P = 0.0142), and Yonsei TMA (P = 0.0334)] and identified as an independent risk predictor of clinical outcomes: GSE15459 [hazard ratio (HR) 1.731 (95% confidence interval; CI; 1.103-2.715), P = 0.017], GSE66229 [HR 1.54 (95% CI, 1.10-2.151), P = 0.011], and Yonsei TMA [HR 1.254 (95% CI, 1.049-1.500), P = 0.013]. Either antibody treatment or GPR177 knockdown suppressed proliferation of GC cells and sensitized cells to apoptosis. And also inhibition of GPR177 suppresses in vitro and in vivo tumorogenesis in GC cells and inhibits $WNT/{\beta}$-catenin signaling. Finally, targeting and inhibition of GPR177 with antibody suppressed tumorigenesis in PDX model. Together, these results suggest GPR177 as a novel candidate for prognostic marker as well as a promising target for treatment of GC patients.