• Title/Summary/Keyword: $\beta$-SiAlON

Search Result 142, Processing Time 0.026 seconds

Effect of YAG on the Fracture Toughness and Electrical Conductivity of $\beta-SIC-ZrB_{2}$ Composites ($\beta-SIC-ZrB_{2}$복합체의 파괴인성과 전기전도도에 미치는 YAG의 영향)

  • Shin, Yong-Deok;Ju, Jin-Young;Yoon, Se-Won;Hwang, Chul;Park, Mi-Lim
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.839-842
    • /
    • 2000
  • The mechanical and electrical properties of the hot-pressed and annealed $\beta$-SiC-ZrB$_2$ electroconductive ceramic composites were investigated as function of the liquid forming additives of $Al_2$O$_3$+Y$_2$O$_3$. Phase analysis of composites by XRD revelled $\alpha$ -SiC(6H), ZrB$_2$, and YAG(Al$_{5}$ Y$_3$O$_{12}$ ). Owing to crack deflection, crack bridging, phase transition and YAG of fracture toughness mechanism, the fracture toughness showed the highest value of 6.3MPa.m$^{1}$2/ for composites added with 24wt% $Al_2$O$_3$+Y$_2$O$_3$additives at room temperature. The resistance temperature coefficient respectively showed the value of 2.46$\times$10$^{-3}$ , 2.47$\times$10$^{-3}$ , 2.52$\times$ 10$^{-3}$ $^{\circ}C$ for composite added with 16, 20, 24wt% A1$_2$O$_3$+Y$_2$O$_3$additives. The electircal resistivity of the composites was all positive temperature coefficient resistance(PTCR) in the temperature range of $25^{\circ}C$ to 90$0^{\circ}C$.

  • PDF

Electronic state calculation of ceramics by $DV-X\;{\alpha}$ cluster method

  • Adachi, Hirohiko
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 1994.11a
    • /
    • pp.1-1
    • /
    • 1994
  • ;The electronic state calculations for various types of ceramic materials have beell performed by the use of $DV-X\;{\alpha}$ cluster method. The molecular orbital levels and wave functions for model clusters have been computed to study the electronic properties ami chemical bonding of the ceramics. For ${\beta}-sialon(Si_{6-z}Al_zO_zN_{8-z})$ which is a high temperature structural material based on ${\beta}-Si_3N_4$, we have made model cluster calculations to estimate the strength of chemical bonding between atoms by the Mulliken population analysis. It is found that the covalent bonding between Si and N atoms is very strong in pure ${\beta}-Si_3N_4$, but the covalency around solute atom is considerably weakened when Si atom is substituted by AI. This tendency is enhanced by an additional substitution of oxygen atom for N. The result calculated can well explain the experimental data of changes in mechanical properties such as the reductions of Young's modulus and Vickers hardness with increment of z-value in ${\beta}-sialon$. Various model clusters for transition metal oxides which show many interesting physical and chemical properties have also been calculated. High-valent perovskite-type iron oxides EMFe0_3E(M=Ca and Sr) possess very interesting magnetic and chemical properties. In these oxides, iron exists as $Fe^{4+}$ state, but the experimental measurement of Mossba~er effect suggests that disproportionation $2Fe^{4+}=Fe^{3+}+Fe^{5+}$ takes place for $CaFe0_3$ at low temperatures. The model cluster calculations for these compounds indicated the existence of considerably strong covalent bonding of Fe-O. The calculations of hyperfine interaction at iron neucleus show very good agreement with the experimental Mossbauer measurements. The result calculated also implies that the disproportionation reaction is strongly possible by assuming the quenching of breathing phonon mode at low temperatures.tures.

  • PDF

Effect of Pre-Aging Conditions on Bake-Hardening Response of Al-0.4 wt%Mg-1.2 wt%Si-0.1 wt%Mn Alloy Sheets

  • Lee, Kwang-jin;Woo, Kee-do
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.6
    • /
    • pp.448-453
    • /
    • 2011
  • Pre-aging heat treatment after solution heat treatment (SHT) of Al-0.4 wt%Mg-1.2 wt%Si-0.1 wt%Mn alloy sheets for auto-bodies was carried out to investigate the effect of pre-aging and its conditions on the bake-hardening response. Mechanical properties were evaluated by a tensile and Vickers hardness test. Microstructural observation was also performed using a transmission electron microscope (TEM). It was revealed that pre-aging treatments play a great role in the bake-hardening response. In addition, it was found that the sphere-shaped nanosized clusters that can directly transit to the needle-shaped ${\beta}$" phase during the paint-bake process, not being dissolved into the matrix, are formed at 343 K. The result, reveals that the dominant factor of the bake-hardening response is the pre-aging temperature rather than the pre-aging time.

Effect of Sintering Additives and Sintering Temperature on Mechanical Properties of the $Si_3N_4$ Composites Containing Aligned $\beta-Si_3N_4$ Whisker (배향된 $\beta-Si_3N_4$ Whisker를 함유하는 $Si_3N_4$ 복합체의 기계적 특성에 미치는 소결조제와 소결온도의 영향)

  • Kim, Chang-Won;Choi, Myoung-Jae;Park, Chan;Park, Dong-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.1
    • /
    • pp.21-25
    • /
    • 2000
  • Gas pressure sintered silicon nitride based composites with 5 wt% $\beta$-Si3N4 whiskers were prepared, and the variations depending on sintering additives and sintering temperature were studied. Sintering additives were 6 wt% Y2O3-1 wt% MgO(6Y1M), 6 wt%Y2O3-1 wt% Al2O3(6Y1A), 6 wt% Y2O3-1 wt% SiO2(6Y1S), and whiskers were unidirectionally oriented by a modified tape casting technique. Samples were fully densified by gas pressure sintering at 2148 K and 2273 K. As the sintering temperature increased, the size of large elongated grains was increased. Three point flexural strength of 6Y1M and 6Y1M samples was higher than that of 6Y1S sample, and the strength decreased as the sintering temperature increased. The indentation crack length became shorter for the sample sintered at higher temperature, and the difference between the cracks length parallel to and normal to the direction of whisker alignment was decreased. In case of cracks 45$^{\circ}$off the whisker alignment direction, the crack length anisotropy disappeared.

  • PDF

The Study on Fabrication of LAS System Ceramics for Thermal Shock Resistance from Silicate Minerals: (II) Preparation of Spodumene Powders with Sillimanite, Kaolin and Pyrophyllite Group Minerals (실리케이트 광물을 이용한 내열충격성 LAS계 세라믹스의 제조에 관한 연구: (II) Sillimanite, Kaolin 및 Pyrophyllite족 광물을 이용한 Spodumene 분말합성)

  • 박한수;조경식;문종수
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.7
    • /
    • pp.784-794
    • /
    • 1994
  • Though spodumene have a law theraml expension and good thermal shock resistance, its sintering temperature is too close to its melting point in the application for industral purpose. Solving the problems, impurities within the silicate minerals act as a frit during firing, so its densification is expected through enlargement of sintering temperature range. By the heat treatment of starting materials, mixtures of silicate mineral, lithium carbonate, if necessary SiO2 or Al2O3 were added for stoichiometric correction, in the range of 1000~125$0^{\circ}C$ for 10 hrs, $\beta$-spodumene single phase was synthesized. Mixtures with sillimanite group minerals, $\beta$-spodumene was formed at 120$0^{\circ}C$ or 125$0^{\circ}C$ via intermediate phases of petalite, Li2SiO3 and LiAlO2. For the case of kaolin group minerals, synthesis were completed at 110$0^{\circ}C$ for Hadon pink kaolin, 120$0^{\circ}C$ for New Zealand white kaolin, When pyrophyllite group minerals were used, those were at the range of 1000~125$0^{\circ}C$. Spodumene was completed at lowest temperature, 100$0^{\circ}C$ from the mixture of Wando pyrophyllite among them. Microstructure of synthesized powders showed the inrregular lump shape such as densed crystallines.

  • PDF

Effect of the Heat Treatment on the Mechanical Property and Corrosion Resistance of CU - 7Al - 2.5Si Alloy (Cu-7Al-2.5Si 합금의 기계적 및 내식특성에 미치는 열처리 효과)

  • Lee, Syung-Yul;Won, Jong-Pil;Park, Dong-Hyun;Moon, Kyung-Man;Lee, Myeong-Hoon;Jeong, Jin-A;Baek, Tae-Sil
    • Corrosion Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.28-35
    • /
    • 2014
  • Recently, the fuel oil of diesel engines of marine ships has been increasingly changed to heavy oil of low quality as the oil price is getting higher and higher. Therefore, the spiral gear attached at the motor of the oil purifier which plays an important role to purify the heavy oil is also easy to expose at severe environmental condition due to the purification of the heavy oil in higher temperature. Thus, the material of the spiral gear requires a better mechanical strength, wear and corrosion resistance. In this study, the heat treatment(tempering) with various holding time at temperature of $500^{\circ}C$ was carried out to the alloy of Cu-7Al-2.5Si as centrifugal casting, and the properties of both hardness and corrosion resistance with and without heat treatment were investigated with observation of the microstructure and with electrochemical methods, such as measurement of corrosion potential, cathodic and anodic polarization curves, cyclic voltammogram, and a.c. impedance. in natural seawater solution. The ${\alpha}$, ${\beta}^{\prime}$ and ${\gamma}_2$ phases were observed in the material in spite of no heat treatment due to quenching effect of a spin mold. However, their phases, that is, ${\beta}^{\prime}$ and ${\gamma}_2$ phases decreased gradually with increasing the holding time at a constant temperature of $500^{\circ}C$. The hardness more or less decreased with heat treatment, however its corrosion resistance was improved with the heat treatment. Furthermore, the longer holding time, the better corrosion resistance. In addition, when the holding time was 48hrs, its corrosion current density showed the lowest value. The pattern of corroded surface was nearly similar to that of the pitting corrosion, and this morphology was greatly observed in the case of no heat treatment. It is considered that ${\gamma}_2$ phase at the grain boundary was corroded preferentially as an anode. However, the pattern of general corrosion exhibited increasingly due to decreasing the ${\gamma}_2$ phase with heat treatment. Consequently, it is suggested that the corrosion resistance of Cu-7Al-2.5Si alloy can be improved with the heat treatment as a holding time for 48 hrs at $500^{\circ}C$.

Effects of Hot Pressing Condition on the Properties of SiCf/SiC Composites (SiCf/SiC 복합체의 특성에 미치는 열간가압소결 조건의 영향)

  • Noviyanto, Alfian;Yoon, Dang-Hyok
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.5
    • /
    • pp.335-341
    • /
    • 2011
  • Continuous SiC fiber-reinforced SiC-matrix composites ($SiC_f$/SiC) had been fabricated by electrophoretic infiltration combined with ultrasonication. Nano-sized ${\beta}$-SiC added with 12 wt% of $Al_2O_3-Y_2O_3$ additive and Tyranno$^{TM}$-SA3 fabric were used as a matrix phase and fiber reinforcement, respectively. After hot pressing at 5 different conditions, the density, microstructure and mechanical properties of $SiC_f$/SiC were characterized. Hot pressing at relatively severe conditions, such as $1750^{\circ}C$ for 1 and 2 h, resulted in a brittle fracture behavior due to the strong fiber-matrix interface in spite of their high flexural strength. On the other hand, toughened $SiC_f$/SiC composite could be achieved by hot pressing at milder condition because of the formation of weak interface in spite of the decreased flexural strength. These results proposed the importance of weak fiber-matrix interface in the fabrication of ductile $SiC_f$/SiC composite.

Phase and microstructure of hot-pressed SiC-AlN solid solutions (열간가압소결에 의한 SiC-AIN 고용체의 상 및 미세구조)

  • Chang-Sung Lim;Chang-Sam Kim;Deock-Soo Cheong
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.2
    • /
    • pp.238-246
    • /
    • 1996
  • High-density SiC-AIN solid solutions were fabricated from powder mixtures of $\beta$-SiC and AIN by hot-pressing in the 1870 to $2030^{\circ}C$ temperature range. The reaction of AIN and $\beta$-SiC (3C) powder transformed to the 2 H (wurzite) structure appeared to depend on the temperature and SiC/A1N ratio and seeds present. The crystalline phases consisted of a SiC-rich solid-solution phase and an A1N-rich solid-solution phase. At $2030^{\circ}C$ for 1 h, for a composition of 50 % AIN/50 % SiC with a seeding of $\alpha$-SiC, the complete solid solution could be obtained and the microstructures are equiaxed with a relatively homogeneous grain size of 2 H phases. The variation of the seeding of $\alpha$-SiC in SIC-A1N solid solutions could be attributed to the transformation behaviour and differences in size and shape of the grains, as well as to other factors, such as grain size distributions, compositional inhomogeneity, and structural defects.

  • PDF

Non-stoichiometric AlOx Films Prepared by Chemical Vapor Deposition Using Dimethylaluminum Isopropoxide as Single Precursor and Their Non-volatile Memory Characteristics

  • Lee, Sun-Sook;Lee, Eun-Seok;Kim, Seok-Hwan;Lee, Byung-Kook;Jeong, Seok-Jong;Hwang, Jin-Ha;Kim, Chang-Gyoun;Chung, Taek-Mo;An, Ki-Seok
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.7
    • /
    • pp.2207-2212
    • /
    • 2012
  • Dimethylaluminum isopropoxide (DMAI, $(CH_3)_2AlO^iPr$) as a single precursor, which contains one aluminum and one oxygen atom, has been adopted to deposit non-stoichiometric aluminum oxide ($AlO_x$) films by low pressure metal organic chemical vapor deposition without an additional oxygen source. The atomic concentration of Al and O in the deposited $AlO_x$ film was measured to be Al:O = ~1:1.1 and any serious interfacial oxide layer between the film and Si substrate was not observed. Gaseous by-products monitored by quadruple mass spectrometry show that ${\beta}$-hydrogen elimination mechanism is mainly contributed to the $AlO_x$ CVD process of DMAI precursor. The current-voltage characteristics of the $AlO_x$ film in Au/$AlO_x$/Ir metalinsulator-metal (MIM) capacitor structure show high ON/OFF ratio larger than ${\sim}10^6$ with SET and RESET voltages of 2.7 and 0.8 V, respectively. Impedance spectra indicate that the switching and memory phenomena are based on the bulk-based origins, presumably the formation and rupture of filaments.

The crystallization behaviours of cordierite gel derived from sil-gel method and glass prepared by the conventional melting method. (용융법과 졸겔법으로 제조된 Cordierite 계 유리와 겔의 결정화 거동)

  • Park, Won-Gyu
    • The Journal of Engineering Research
    • /
    • v.1 no.1
    • /
    • pp.15-22
    • /
    • 1997
  • The crystallization behaviours of cordierite gel derived from sol-gel method and glass prepared from conventional melting method with or without $TiO_2$ as nucleants are compared. The densification temperature of gel is $810^{\circ}C$ and its chemical structure identified by IR analysis is same as that of glass melted by conventional method. The beginning crystallization temperature of gel is $965^{\circ}C$ lower than that of melted glass with 10wt% $TiO_2$, which is $978^{\circ}C$. The crystalline phases developed from gel during heat treatment are identified as spinel, $\beta$-quartz solid solution and $\alpha$-cordierite crystal and crystalline phases in case of glass are (Mg,Al)TiOn and $\beta$-quartz solid solution and $\alpha$-cordierite crystal, respectively. The crystallization in melted glass with nucleants occurs through bulk crystallization and in case of that without nucleants surface crystallization occurs, while the crystallization in gel is internal crystallization from interface between particles formed after densification.

  • PDF