• Title/Summary/Keyword: $\beta$-Secretase (BACE1)

Search Result 22, Processing Time 0.031 seconds

β-Secretase (BACE1) Purification by Refolding Method and Complex with Hispidin

  • Lim, Ji-Hong;Lee, Bo Ram;Park, Hee Won;Hong, Bum Soo;Lim, Beong Ou;Kim, Young Jun
    • Journal of the Korean Chemical Society
    • /
    • v.58 no.6
    • /
    • pp.553-559
    • /
    • 2014
  • Alzheimer's disease (AD) is a devastating neurodegenerative disease that represents the most common form of dementia among the elderly population. The deposition of aggregated ${\beta}$-amyloid ($A{\beta}$) senile plaques in the human brain is a classic observation in the neuropathology of AD, yet an understanding of the mechanism of their formation remains elusive. $A{\beta}$ is formed through endoproteolysis of the amyloid precursor protein (APP) by ${\beta}$-secretase (BACE1, ${\beta}$-site APP-cleaving enzyme) and ${\gamma}$-secretase. In this study, BACE1 protein was successfully over-expressed, purified, and refolded and utilized in a binding study with hispidin. We developed a simpler refolding method using a urea gradient and size-exclusion gel filtration to purify an active BACE1 protein variant, in larger quantities than that reported previously, and measured the binding affinity of hispidin to the BACE1 protein variant through isothermal titration calorimetry.

Inhibitory Effects of Flavonoids Isolated from Leaves of Petasites japonicus on $\beta$-Secretase (BACE1)

  • Song, Kyung-Sik;Choi, Sun-Ha;Hur, Jong-Moon;Park, Hyo-Jun;Yang, Eun-Ju;MookJung, In-Hee;Yi, Jung-Hyun;Jun, Mi-Ra
    • Food Science and Biotechnology
    • /
    • v.17 no.6
    • /
    • pp.1165-1170
    • /
    • 2008
  • The deposition of the amyloid $\beta}$ ($A{\beta}$)-peptide following proteolytic processing of amyloid precursor protein (APP) by $\beta$-secretase (BACE1) and $\gamma$-secretase is critical feature in the progress of Alzheimer's disease (AD). Consequently, BACE1, a key enzyme in the production of $A{\beta}$, is a prime target for therapeutic intervention in AD. In the course of searching for BACE1 inhibitors from natural sources, the ethyl acetate fraction of Petasites japonicus showed potent inhibitory activity. Two BACE1 inhibitors quercetin (QC) and kaempferol 3-O-(6"-acetyl)-$\beta$-glucopyranoside (KAG) were isolated from P. japonicus by activity-guided purification. QC, in particular, non-competitively attenuated BACE1 activity with $IC_{50}$ value of $2.1{\times}10^{-6}\;M$ and $K_i$ value of $3.7{\times}10^{-6}\;M$. Both compounds exhibited less inhibition of $\alpha$-secreatase (TACE) and other serine proteases including chymotrypsin, trypsin, and elastase, suggesting that they ere relatively specific and selective inhibitors to BACE1. Furthermore, both compounds significantly reduced the extracellular $A{\beta}$ secretion in $APP_{695}$-transfected B103 cells.

Suppression of β-Secretase (BACE1) Activity and β-Amyloid Protein-Induced Neurotoxicity by Solvent Fractions from Petasites japonicus Leaves

  • Hong, Seung-Young;Park, In-Shik;Jun, Mi-Ra
    • Preventive Nutrition and Food Science
    • /
    • v.16 no.1
    • /
    • pp.18-23
    • /
    • 2011
  • Alzheimer's disease (AD) is a neurodegenerative disorder characterized by neuronal loss and extracellular senile plaques containing $\beta$-amyloid peptide (A$\beta$). The deposition of the A$\beta$ peptide following proteolytic processing of amyloid precursor protein (APP) by $\beta$-secretase (BACE1) and $\gamma$-secretase is a critical feature in the progression of AD. Among the plant extracts tested, the ethanol extract of Petasites japonicus leaves showed novel protective effect on B103 neuroblastoma cells against neurotoxicity induced by A$\beta$, as well as a strong suppressive effect on BACE1 activity. Ethanol extracts of P. japonicus leaves were sequentially extracted with methylene chloride, ethyl acetate and butanol and evaluated for potential to inhibit BACE1, as well as to suppress A$\beta$-induced neurotoxicity. Exposure to A$\beta$ significantly reduced cell viability and increased apoptotic cell death. However, pretreatment with ethyl acetate fraction of P. japonicus leaves prior to A$\beta$ (50 ${\mu}M$) significantly increased cell viability (p<0.01). In parallel, cell apoptosis triggered by A$\beta$ was also dramatically inhibited by ethyl acetate fraction of P. japonicus leaves. Moreover, the ethyl acetate fraction suppressed caspase-3 activity to the basal level at 30 ppm. Taken together, these results demonstrated that P. japonicus leaves appear to be a useful source for the inhibition and/or prevention of AD by suppression of BACE1 activity and attenuation of A$\beta$ induced neurocytotoxicity.

[ $\beta$ ]-Secretase (BACE1) Inhibitors from Sanguisorbae Radix

  • Lee, Hee-Ju;Seong, Yeon-Hee;Bae, Ki-Hwan;Kwon, Soon-Ho;Kwak, Hye-Min;Nho, Si-Kab;Kim, Kyung-A;Hur, Jong-Moon;Lee, Kyung-Bok;Kang, Young-Hwa;Song, Kyung-Sik
    • Archives of Pharmacal Research
    • /
    • v.28 no.7
    • /
    • pp.799-803
    • /
    • 2005
  • In the course of screening anti-dementia agents from natural products, two $\beta$-secretase (BACE1) inhibitors were isolated from the ethyl acetate soluble fraction of Sanguisorbae Radix by the activity-guided purification using silica gel, Sephadex LH-20, and RP-HPLC. They were identified as 1,2,3-trigalloyl-4,6-hexahydroxydiphenoyl-$\beta$-D-glucopyranoside (Tellimagrandin II, 1) and 1,2,3,4,6-pentagalloyl-$\beta$-D-glucopyranoside (2) and were shown to non-competitively inhibit $\beta$-secretase (BACE1) with the $IC_{50}$ values of $3.10{\times}10^{-6}M\;and\;3.76{\times}10^{-6}M$, respectively. The Ki values of 1 and 2 were $6.84{\times}10^{-6}M\;and\;5.13{\times}10^{-6}M$. They were less inhibitory to asecretase (TACE) and other serine proteases such as chymotrypsin, trypsin, and elastase, suggesting that they were relatively specific inhibitors of BACE1.

Plant Phenolics as ${\beta}$-Secretase (BACE1) Inhibitors

  • Jun, Mi-Ra;Lee, Seung-Ho;Choi, Sun-Ha;Bae, Ki-Hwan;Seong, Yeon-Hee;Lee, Kyung-Bok;Song, Kyung-Sik
    • Food Science and Biotechnology
    • /
    • v.15 no.4
    • /
    • pp.617-624
    • /
    • 2006
  • Various plant phenolics were assessed for (${\beta}$-secretase (BACE1) inhibitory activity in order to screen for anti-dementia agents. Among 39 phenolics, eight compounds, 1,2,3-trigalloyl glucopyranoside, acetonyl geraniin, euphorscopin, furosine, helioscopinin A, helioscopinin B, jolkinin, and rugosin E exhibited strong inhibition of BACE1 with $IC_{50}$ values of $5.87{\times}10^{-8}-54.93{\times}10^{-6}\;M$. Among them, rugosin E was the most potent ($IC_{50}$ $5.87{\times}10^{-8}\;M$). The active compounds were shown to be non-competitive inhibitors by Dixon plot. All the phenolic BACE1 inhibitors except furosin also suppressed prolyl endopeptidase (PEP) activity. However, these phenolic compounds caused less inhibition of ${\alpha}$-secretase (tumor necrosis factor a converting enzyme; TACE) and no significant inhibition of other serine proteases such as trypsin, chymotrypsin, and elastase was seen, demonstrating that they are relatively specific to both BACE1 and PEP. No significant structure-activity relationships were found.

Docking and Quantitative Structure Activity Relationship studies of Acyl Guanidines as β-Secretase (BACE1) Inhibitor

  • Hwang, Yu Jin;Im, Chaeuk
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.7
    • /
    • pp.2065-2071
    • /
    • 2014
  • ${\beta}$-Secretase (beta-amyloid converting enzyme 1 [BACE1]) is involved in the first and rate-limiting step of ${\beta}$-amyloid ($A{\beta}$) peptides production, which leads to the pathogenesis of Alzheimer's disease(AD). Therefore, inhibition of BACE1 activity has become an efficient approach for the treatment of AD. Ligand-based and docking-based 3D-quantitative structure-activity relationship (3D-QSAR) studies of acyl guanidine analogues were performed with comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) to obtain insights for designing novel potent BACE1 inhibitors. We obtained highly reliable and predictive CoMSIA models with a cross-validated $q^2$ value of 0.725 and a predictive coefficient $r{^2}_{pred}$ value of 0.956. CoMSIA contour maps showed the structural requirements for potent activity. 3D-QSAR analysis suggested that an acyl guanidine and an amide group in the $R_6$ substituent would be important moieties for potent activity. Moreover, the introduction of small hydrophobic groups in the phenyl ring and hydrogen bond donor groups in 3,5-dichlorophenyl ring could increase biological activity.

Synthesis and Biological Evaluation of 3-Amino-4-aryl-piperidine Derivatives as BACE 1 Inhibitors

  • Lim, Hee-Jong;Jung, Myung-Hee;ChoiLee, Ihl-Young;Park, Woo-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.9
    • /
    • pp.1371-1376
    • /
    • 2006
  • BACE 1 ($\beta$-secretase), a membrane bound aspartic protease, is a key enzyme in the process of amyloid precursor protein (APP) into A$\beta$ peptide which is considered to play a causative role in Alzheimers Disease (AD). Here, we reported the synthesis and inhibitory activity of optically active 3-amino-4-aryl-piperidines.

Green Tea Catechins as a BACE1 ($\beta$-Secretase) Inhibitor

  • Jeon, So-Young;Lee, Hee-Ju;Kim, Ji-Eun;Bae, Ki-Hwan;Seong, Yeon-Hee;Song, Kyung-Sik
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.212.2-212.2
    • /
    • 2003
  • In the course of searching for BACE1 (${\beta}$-secretase) inhibitors from natural products, the ethyl acetate soluble fraction of green tea, which was suspected to be rich in catechin content, showed potent inhibitory activity. (-)-Epigallocatechin gallate, (-)-epicatechin gallate, and (-)-gallocatechin gallate ware isolated with IC$\_$50/ values of 1.6${\times}$10$\^$-6/ M, 4.5${\times}$10$\^$-6/ M, and 1.8${\times}$10$\^$-6/ M, respectively. Seven additional authentic catechins were tested for a fundamental structure-activity relationship. (-)-Catechin gallate, (-)-gallocatechin, and (-)-epigallocatechin significantly inhibited BACE1 activity with IC$\_$50/ values of 6.0${\times}$10$\^$-6/ M, 2.5${\times}$10$\^$-6/ M, and 2.4${\times}$10$\^$-6/ M, respectively. (omitted)

  • PDF

Hispidin from the Mycelial Cultures of Phellinus linteus Inhibits A $\beta$-Secreatase(BACE1) and proyl endopeptidase

  • Park, In-Hye;Kim, Sang-In;Jeon, So-Young;Lee, Hee-Ju;Song, Kyung-Sik
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.271.2-271.2
    • /
    • 2003
  • The ${\gamma}$- and ${\beta}$-secretase are one of the most important proteases, which cleave amyloid precursor protein (APP) into neurotoxic A${\beta}$ peptide in Azheimer's type dementia. In the course of screening for anti-dementia agents from natural products, the mycelial culture of mushroom Phellinus linteus showed potent inhibition againt ${\beta}$-secretase (BACE1). (omitted)

  • PDF

Screening and Optimal Extraction of a New Antidementia β-Secretase Inhibitor-Containing Mushroom

  • Seo, Dong-Soo;Lee, Eun-Na;Seo, Geon-Sik;Lee, Jong-Soo
    • Mycobiology
    • /
    • v.36 no.3
    • /
    • pp.195-197
    • /
    • 2008
  • To produce a potent antidementia $\beta$-secretase inhibitor from a mushroom, the $\beta$-secretase inhibitory activities of various mushroom extracts were determined. Methanol extracts of Lentinula edodes exhibited the highest inhibitory activity (40.1%). The inhibitor was maximally extracted when a fruiting body of L. edodes was treated with 50% methanol at 40$^{\circ}C$ for 24 h.