• 제목/요약/키워드: $\beta$-FeSi$_2$

검색결과 92건 처리시간 0.018초

강일옥 옥수수의 영양성분, 카로티노이드 함량분석 및 생리활성 평가 (Assessment of Nutritional Components, Carotenoid Content and Physiological Activity of Maize Hybrid for Grain 'Kangilok')

  • 이기연;김재은;홍수영;김태희;박아름;노희선;김시창;박종열;안문섭;김희연
    • 한국식품위생안전성학회지
    • /
    • 제32권6호
    • /
    • pp.513-520
    • /
    • 2017
  • 본 연구는 마치종 황색 알곡 품종으로 등록된 강일옥 옥수수 알곡의 처리별 시료 및 속대의 일반성분, 생리활성 검정, 색소 함량을 분석하여 기초자료로 제공하고자 수행되었다. 강일옥 옥수수를 알곡, 거피된 알곡, 알곡 껍질 및 속대로 분리하여 일반성분 분석 결과, 수분함량은 거피된 알곡이 12.04%로 가장 높았고 알곡 껍질의 조회분, 조지방, 조단백질 함량은 각각 3.19%, 8.59%, 12.01%로 강일옥 옥수수 처리별 시료 중 가장 높은 함량을 나타내었다. 강일옥 옥수수 처리별 시료의 무기성분 함량을 분석한 결과, 칼슘, 칼륨, 마그네슘, 철, 망간 및 인의 6종이 검출되었으며 공통적으로 검출된 주요 무기성분은 칼륨과 인이었다. 강일옥 옥수수 속대의 칼륨 함량이 114.33 mg/100 g으로 가장 높았으며 알곡 껍질의 인 함량이 2412.40 mg/100 g으로 가장 높게 측정되었다. 강일옥 옥수수 처리별 시료의 항산화 활성 검정 결과, 강일옥 옥수수 속대 추출물의 DPPH radical 소거능은 93.05%, ABTS radical 소거능은 79.88%로 처리별 시료 중 가장 높게 측정되었으며 알곡, 거피된 알곡 및 알곡껍질 추출물의 DPPH 소거능은 모두 70% 이상으로 우수한 항산화활성을 나타내었다. 강일옥 옥수수 처리별 시료의 항염 활성 검정 결과, 강일옥 옥수수 처리별 시료 추출물은 Raw264.7 대식세포의 생존율에 영향을 미치지 않은 것으로 나타났으며 NO 생성량은 모든 시료 처리군에서 LPS 단독 처리군(con(+))에 비하여 유의적으로 NO 생성을 억제 하는 것으로 나타났다. 강일옥 옥수수 처리별 건조분말시료의 카로티노이드 색소 함량을 분석한 결과, 모든 시료에서 ${\beta}$-carotene은 검출되지 않았고, lutein과 zeaxantin은 알곡과 알곡 껍질에서 검출되었으며 거피된 알곡과 속대에서는 검출되지 않았다. 강일옥 옥수수 알곡의 lutein과 zeaxantin의 함량은 각각 $115.30{\mu}g$/100 g, $50.92{\mu}g$/100 g이었으며 알곡껍질의 lutein과 zeaxantin의 함량은 각각 $37.98{\mu}g$/100 g, $19.27{\mu}g$/100 g이었다.

지하수 관개에 의한 수도의 멸준양상과 그 방지책에 관한 연구 (Studies on the Rice Yield Decreased by Ground Water Irrigation and Its Preventive Methods)

  • 한욱동
    • 한국농공학회지
    • /
    • 제16권1호
    • /
    • pp.3225-3262
    • /
    • 1974
  • The purposes of this thesis are to clarify experimentally the variation of ground water temperature in tube wells during the irrigation period of paddy rice, and the effect of ground water irrigation on the growth, grain yield and yield components of the rice plant, and, furthermore, when and why the plant is most liable to be damaged by ground water, and also to find out the effective ground water irrigation methods. The results obtained in this experiment are as follows; 1. The temperature of ground water in tube wells varies according to the location, year, and the depth of the well. The average temperatures of ground water in a tubewells, 6.3m, 8.0m deep are $14.5^{\circ}C$ and $13.1^{\circ}C$, respercively, during the irrigation period of paddy rice (From the middle of June to the end of September). In the former the temperature rises continuously from $12.3^{\circ}C$ to 16.4$^{\circ}C$ and in the latter from $12.4^{\circ}C$ to $13.8^{\circ}C$ during the same period. These temperatures are approximately the same value as the estimated temperatures. The temperature difference between the ground water and the surface water is approximately $11^{\circ}C$. 2. The results obtained from the analysis of the water quality of the "Seoho" reservoir and that of water from the tube well show that the pH values of the ground water and the surface water are 6.35 and 6.00, respectively, and inorganic components such as N, PO4, Na, Cl, SiO2 and Ca are contained more in the ground water than in the surface water while K, SO4, Fe and Mg are contained less in the ground water. 3. The response of growth, yield and yield components of paddy rice to ground water irrigation are as follows; (l) Using ground water irrigation during the watered rice nursery period(seeding date: 30 April, 1970), the chracteristics of a young rice plant, such as plant height, number of leaves, and number of tillers are inferior to those of young rice plants irrigated with surface water during the same period. (2) In cases where ground water and surface water are supplied separately by the gravity flow method, it is found that ground water irrigation to the rice plant delays the stage at which there is a maximum increase in the number of tillers by 6 days. (3) At the tillering stage of rice plant just after transplanting, the effect of ground water irrigation on the increase in the number of tillers is better, compared with the method of supplying surface water throughout the whole irrigation period. Conversely, the number of tillers is decreased by ground water irrigation at the reproductive stage. Plant height is extremely restrained by ground water irrigation. (4) Heading date is clearly delayed by the ground water irrigation when it is practised during the growth stages or at the reproductive stage only. (5) The heading date of rice plants is slightly delayed by irrigation with the gravity flow method as compared with the standing water method. (6) The response of yield and of yield components of rice to ground water irrigation are as follows: \circled1 When ground water irrigation is practised during the growth stages and the reproductive stage, the culm length of the rice plant is reduced by 11 percent and 8 percent, respectively, when compared with the surface water irrigation used throughout all the growth stages. \circled2 Panicle length is found to be the longest on the test plot in which ground water irrigation is practised at the tillering stage. A similar tendency as that seen in the culm length is observed on other test plots. \circled3 The number of panicles is found to be the least on the plot in which ground water irrigation is practised by the gravity flow method throughout all the growth stages of the rice plant. No significant difference is found between the other plots. \circled4 The number of spikelets per panicle at the various stages of rice growth at which_ surface or ground water is supplied by gravity flow method are as follows; surface water at all growth stages‥‥‥‥‥ 98.5. Ground water at all growth stages‥‥‥‥‥‥62.2 Ground water at the tillering stage‥‥‥‥‥ 82.6. Ground water at the reproductive stage ‥‥‥‥‥ 74.1. \circled5 Ripening percentage is about 70 percent on the test plot in which ground water irrigation is practised during all the growth stages and at the tillering stage only. However, when ground water irrigation is practised, at the reproductive stage, the ripening percentage is reduced to 50 percent. This means that 20 percent reduction in the ripening percentage by using ground water irrigation at the reproductive stage. \circled6 The weight of 1,000 kernels is found to show a similar tendency as in the case of ripening percentage i. e. the ground water irrigation during all the growth stages and at the reproductive stage results in a decreased weight of the 1,000 kernels. \circled7 The yield of brown rice from the various treatments are as follows; Gravity flow; Surface water at all growth stages‥‥‥‥‥‥514kg/10a. Ground water at all growth stages‥‥‥‥‥‥428kg/10a. Ground water at the reproductive stage‥‥‥‥‥‥430kg/10a. Standing water; Surface water at all growh stages‥‥‥‥‥‥556kg/10a. Ground water at all growth stages‥‥‥‥‥‥441kg/10a. Ground water at the reproductive stage‥‥‥‥‥‥450kg/10a. The above figures show that ground water irrigation by the gravity flow and by the standing water method during all the growth stages resulted in an 18 percent and a 21 percent decrease in the yield of brown rice, respectively, when compared with surface water irrigation. Also ground water irrigation by gravity flow and by standing water resulted in respective decreases in yield of 16 percent and 19 percent, compared with the surface irrigation method. 4. Results obtained from the experiments on the improvement of ground water irrigation efficiency to paddy rice are as follows; (1) When the standing water irrigation with surface water is practised, the daily average water temperature in a paddy field is 25.2$^{\circ}C$, but, when the gravity flow method is practised with the same irrigation water, the daily average water temperature is 24.5$^{\circ}C$. This means that the former is 0.7$^{\circ}C$ higher than the latter. On the other hand, when ground water is used, the daily water temperatures in a paddy field are respectively 21.$0^{\circ}C$ and 19.3$^{\circ}C$ by practising standing water and the gravity flow method. It can be seen that the former is approximately 1.$0^{\circ}C$ higher than the latter. (2) When the non-water-logged cultivation is practised, the yield of brown rice is 516.3kg/10a, while the yield of brown rice from ground water irrigation plot throughout the whole irrigation period and surface water irrigation plot are 446.3kg/10a and 556.4kg/10a, respectivelely. This means that there is no significant difference in yields between surface water irrigation practice and non-water-logged cultivation, and also means that non-water-logged cultivation results in a 12.6 percent increase in yield compared with the yield from the ground water irrigation plot. (3) The black and white coloring on the inside surface of the water warming ponds has no substantial effect on the temperature of the water. The average daily water temperatures of the various water warming ponds, having different depths, are expressed as Y=aX+b, while the daily average water temperatures at various depths in a water warming pond are expressed as Y=a(b)x (where Y: the daily average water temperature, a,b: constants depending on the type of water warming pond, X; water depth). As the depth of water warning pond is increased, the diurnal difference of the highest and the lowest water temperature is decreased, and also, the time at which the highest water temperature occurs, is delayed. (4) The degree of warming by using a polyethylene tube, 100m in length and 10cm in diameter, is 4~9$^{\circ}C$. Heat exchange rate of a polyethylene tube is 1.5 times higher than that or a water warming channel. The following equation expresses the water warming mechanism of a polyethylene tube where distance from the tube inlet, time in day and several climatic factors are given: {{{{ theta omega (dwt)= { a}_{0 } (1-e- { x} over { PHI v })+ { 2} atop { SUM from { { n}=1} { { a}_{n } } over { SQRT { 1+ {( n omega PHI) }^{2 } } } } LEFT { sin(n omega t+ { b}_{n }+ { tan}^{-1 }n omega PHI )-e- { x} over { PHI v }sin(n omega LEFT ( t- { x} over {v } RIGHT ) + { b}_{n }+ { tan}^{-1 }n omega PHI ) RIGHT } +e- { x} over { PHI v } theta i}}}}{{{{ { theta }_{$\infty$ }(t)= { { alpha theta }_{a }+ { theta }_{ w'} +(S- { B}_{s } ) { U}_{w } } over { beta } , PHI = { { cpDU}_{ omega } } over {4 beta } }}}} where $\theta$$\omega$; discharged water temperature($^{\circ}C$) $\theta$a; air temperature ($^{\circ}C$) $\theta$$\omega$';ponded water temperature($^{\circ}C$) s ; net solar radiation(ly/min) t ; time(tadian) x; tube length(cm) D; diameter(cm) ao,an,bn;constants determined from $\theta$$\omega$(t) varitation. cp; heat capacity of water(cal/$^{\circ}C$ ㎥) U,Ua; overall heat transfer coefficient(cal/$^{\circ}C$ $\textrm{cm}^2$ min-1) $\omega$;1 velocity of water in a polyethylene tube(cm/min) Bs ; heat exchange rate between water and soil(ly/min)

  • PDF