• Title/Summary/Keyword: $\bar{\partial}$-problem

Search Result 26, Processing Time 0.025 seconds

Validity of the Multiple Scale Solution for a Resonance Response of a Bar with a Nonlinear Boundary Condition (비선형 경계조건을 가진 봉의 공진응답을 위한 다중시간해의 타당성)

  • 이원경;여명환;배상수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.10a
    • /
    • pp.275-281
    • /
    • 1996
  • In order to examine the validity of an asymptotic solution obtained from the method of multiple scales, we investigate a third-order subharmonic resonance response of a bar constrained by a nonlinear spring to a harmonic excitation. The motion of the bar is governed by a linear partial differential equation with a nonlinear boundary condition. The nonlinear boundary value problem is solved by using the finite difference method. The numerical solution is compared with the asymptotic solution.

  • PDF

ON NONSINGULAR EMBRY QUARTIC MOMENT PROBLEM

  • Li, Chungji;Sun, Xiaoyun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.44 no.2
    • /
    • pp.337-350
    • /
    • 2007
  • Given a collection of complex numbers ${\gamma}{\equiv}\{{\gamma}ij\}$ $(0{\leq}i+j{\leq}2n,\;|i-j|{\leq}n)$ with ${\gamma}00>0\;and\;{\gamma}ji=\bar{\gamma}ij$, we consider the moment problem for ${\gamma}$ in the case of n=2, which is referred to Embry quartic moment problem. In this note we give a partial solution for the nonsingular case of Embry quartic moment problem.

MULTIPLE SOLUTIONS FOR EQUATIONS OF p(x)-LAPLACE TYPE WITH NONLINEAR NEUMANN BOUNDARY CONDITION

  • Ki, Yun-Ho;Park, Kisoeb
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.6
    • /
    • pp.1805-1821
    • /
    • 2016
  • In this paper, we are concerned with the nonlinear elliptic equations of the p(x)-Laplace type $$\{\begin{array}{lll}-div(a(x,{\nabla}u))+{\mid}u{\mid}^{p(x)-2}u={\lambda}f(x,u) && in\;{\Omega}\\(a(x,{\nabla}u)\frac{{\partial}u}{{\partial}n}={\lambda}{\theta}g(x,u) && on\;{\partial}{\Omega},\end{array}$$ which is subject to nonlinear Neumann boundary condition. Here the function a(x, v) is of type${\mid}v{\mid}^{p(x)-2}v$ with continuous function $p:{\bar{\Omega}}{\rightarrow}(1,{\infty})$ and the functions f, g satisfy a $Carath{\acute{e}}odory$ condition. The main purpose of this paper is to establish the existence of at least three solutions for the above problem by applying three critical points theory due to Ricceri. Furthermore, we localize three critical points interval for the given problem as applications of the theorem introduced by Arcoya and Carmona.

A NOTE ON BOUNDARY BLOW-UP PROBLEM OF 𝚫u = up

  • Kim, Seick
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.1
    • /
    • pp.245-251
    • /
    • 2019
  • Assume that ${\Omega}$ is a bounded domain in ${\mathbb{R}}^n$ with $n{\geq}2$. We study positive solutions to the problem, ${\Delta}u=u^p$ in ${\Omega}$, $u(x){\rightarrow}{\infty}$ as $x{\rightarrow}{\partial}{\Omega}$, where p > 1. Such solutions are called boundary blow-up solutions of ${\Delta}u=u^p$. We show that a boundary blow-up solution exists in any bounded domain if 1 < p < ${\frac{n}{n-2}}$. In particular, when n = 2, there exists a boundary blow-up solution to ${\Delta}u=u^p$ for all $p{\in}(1,{\infty})$. We also prove the uniqueness under the additional assumption that the domain satisfies the condition ${\partial}{\Omega}={\partial}{\bar{\Omega}}$.

Validity of the Multiple Scale Solution for a Resonance Response of a Bar with a Nonlinear Boundary Condition (비선형 경계조건을 가진 봉의 공진응답을 위한 다중시간해의 타당성)

  • 이원경;여명환;배상수
    • Journal of KSNVE
    • /
    • v.7 no.1
    • /
    • pp.55-60
    • /
    • 1997
  • In order to examine the validity of an asymptotic solution obtained from the method of multiple scales, we investigate a third-order subharmonic resonance response of a bar constrained by a nonlinear spring to a harmonic excitation. The motion of the bar is governed by a linear partial differential equation with a nonlinear boundary condition. The nonlinear boundary value problem is solved by using the finite difference method. The numerical solution is compared with the asymptotic solution.

  • PDF

STRAIN ON THE LABIAL PLATES AROUND ABUTMENTS SUPPORTING REMOVABLE PARTIAL DENTURES WITH VARIOUS PROSTHETIC DESIGNS: AN IN VITRO STUDY

  • Kim, Seong-Kyun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.3
    • /
    • pp.322-330
    • /
    • 2005
  • Statement of problem. In distal extension removable partial denture, the preservation of health of abutment teeth is very important, but abutment teeth are subjected to unfavorable stress. Purpose. The purpose of this study was to investigate the biomechanical effects of mandibular removable partial dentures with various prosthetic designs using strain gauge analysis. Material and methods. Artificial teeth of both canines were anchored bilaterally in a mandibular edentulous model made of resin. Bilateral distal extension removable partial dentures with splinted and unsplinted abutments were fabricated. Group 1 : Clasp-retained mandibular removable partial denture with unsplinted abuhnents Group 2 : Clasp-retained mandibular removable partial denture with splinted abutments by 6-unit bridge Group 3 : Bar-retained mandibular removable partial denture Strain gauges were bonded on the labial plate of the mandibular resin model, approximately 2 mm close to the abutments. Two vertical experimental loadings (100N and 200N) were applied subsequently via two miniature load cells that were placed at mandibular first molar regions. Strain measurements were performed and simultaneously monitored from a computer connected to data acquisition system. For within-group evaluations, t-test was used to compare the strain values and for between-group comparisons, a one-way analysis of variance (ANOVA) was used and Duncan test was used as post hoc comparisons. Results. Strain values increased as the applied load increased from 100N to 200N for all groups (p<.05). The strain values of group 1 and 2 were tensile under loadings. In contrast, strain values of group 3 were compressive in nature. Under 100N loading, group 1 showed higher strain values than group 3 in absolute quantity (p<.05). Under 200N loading, group 3 showed higher strain values than group 1 and 2 in absolute quantity (p<.05). Group 1 showed higher strain values than group 2 (p<.05). Conclusion. Splinting of two isolated abutments by bridge reduced the peri-abutment strain in comparison with unsplinted abutments. Strain of bar-retained removable partial denture increased much more as applied load increased, but was compressive in nature.

EXPLICIT SOBOLEV ESTIMATES FOR THE CAUCHY-RIEMANN EQUATION ON PARAMETERS

  • Cho, Sang-Hyun;Choi, Jae-Seo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.45 no.2
    • /
    • pp.321-338
    • /
    • 2008
  • Let $\bar{M}$ be a smoothly bounded pseudoconvex complex manifold with a family of almost complex structures $\{L^{\tau}\}_{{\tau}{\in}I}$, $0{\in}I$, which extend smoothly up to bM, the boundary of M, and assume that there is ${\lambda}{\in}C^{\infty}$(bM) which is strictly subharmonic with respect to the structure $L^0|_{bM}$ in any direction where the Levi-form vanishes on bM. We obtain explicit estimates for the $\bar{\partial}$-Neumann problem in Sobolev spaces both in space and parameter variables. Also we get a similar result when $\bar{M}$ is strongly pseudoconvex.

THE 3D BOUSSINESQ EQUATIONS WITH REGULARITY IN THE HORIZONTAL COMPONENT OF THE VELOCITY

  • Liu, Qiao
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.3
    • /
    • pp.649-660
    • /
    • 2020
  • This paper proves a new regularity criterion for solutions to the Cauchy problem of the 3D Boussinesq equations via one directional derivative of the horizontal component of the velocity field (i.e., (∂iu1; ∂ju2; 0) where i, j ∈ {1, 2, 3}) in the framework of the anisotropic Lebesgue spaces. More precisely, for 0 < T < ∞, if $$\large{\normalsize\displaystyle\smashmargin{2}{\int\nolimits_o}^T}({\HUGE\left\|{\small{\parallel}{\partial}_iu_1(t){\parallel}_{L^{\alpha}_{x_i}}}\right\|}{\small^{\gamma}_{L^{\beta}_{x_{\hat{i}}x_{\bar{i}}}}+}{\HUGE\left\|{\small{\parallel}{\partial}_iu_2(t){\parallel}_{L^{\alpha}_{x_j}}}\right\|}{\small^{\gamma}_{L^{\beta}_{x_{\hat{i}}x_{\bar{i}}}}})dt<{{\infty}},$$ where ${\frac{2}{{\gamma}}}+{\frac{1}{{\alpha}}}+{\frac{2}{{\beta}}}=m{\in}[1,{\frac{3}{2}})$ and ${\frac{3}{m}}{\leq}{\alpha}{\leq}{\beta}<{\frac{1}{m-1}}$, then the corresponding solution (u, θ) to the 3D Boussinesq equations is regular on [0, T]. Here, (i, ${\hat{i}}$, ${\tilde{i}}$) and (j, ${\hat{j}}$, ${\tilde{j}}$) belong to the permutation group on the set 𝕊3 := {1, 2, 3}. This result reveals that the horizontal component of the velocity field plays a dominant role in regularity theory of the Boussinesq equations.

EXISTENCE OF LARGE SOLUTIONS FOR A QUASILINEAR ELLIPTIC PROBLEM

  • Sun, Yan;Yang, Zuodong
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.1_2
    • /
    • pp.217-231
    • /
    • 2010
  • We consider a class of elliptic problems of a logistic type $$-div(|{\nabla}_u|^{m-2}{\nabla}_u)\;=\;w(x)u^q\;-\;(a(x))^{\frac{m}{2}}\;f(u)$$ in a bounded domain of $\mathbf{R}^N$ with boundary $\partial\Omega$ of class $C^2$, $u|_{\partial\Omega}\;=\;+{\infty}$, $\omega\;\in\;L^{\infty}(\Omega)$, 0 < q < 1 and $a\;{\in}\;C^{\alpha}(\bar{\Omega})$, $\mathbf{R}^+$ is non-negative for some $\alpha\;\in$ (0,1), where $\mathbf{R}^+\;=\;[0,\;\infty)$. Under suitable growth assumptions on a, b and f, we show the exact blow-up rate and uniqueness of the large solutions. Our proof is based on the method of sub-supersolution.

A Quantitative Self Alignment Method in Incremental Printing: Coalescent Bar Alignment

  • Chun, Y.;Kim, T.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07e
    • /
    • pp.106-109
    • /
    • 2003
  • The repeatability error creeps in every corner of mechanical design as mechanical design becomes diverse and complicated. Inkjet printing has inherent repeatability error problem due to its nature of seamless incremental image synthesis of partial images. Without the calibration for the repeatability error realization of high print quality or enhancement of other printing performance could be impaired. Printer designers have met this recurrent problem even before the inception of inkjet print device and contrived various solutions as their own intelectual proprietary. Also, it is a trend to perform necessary calibration without painstaking human intervention. To come up with another useful and proprietary solution has become an important ingredient in inkjet printer design. This paper presents such a solution developed at Digital Printing Division of Samsung Electronics Company.

  • PDF