• Title/Summary/Keyword: $\alpha$-skew Armendariz rings

Search Result 8, Processing Time 0.024 seconds

WEAK α-SKEW ARMENDARIZ RINGS

  • Zhang, Cuiping;Chen, Jianlong
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.3
    • /
    • pp.455-466
    • /
    • 2010
  • For an endomorphism $\alpha$ of a ring R, we introduce the weak $\alpha$-skew Armendariz rings which are a generalization of the $\alpha$-skew Armendariz rings and the weak Armendariz rings, and investigate their properties. Moreover, we prove that a ring R is weak $\alpha$-skew Armendariz if and only if for any n, the $n\;{\times}\;n$ upper triangular matrix ring $T_n(R)$ is weak $\bar{\alpha}$-skew Armendariz, where $\bar{\alpha}\;:\;T_n(R)\;{\rightarrow}\;T_n(R)$ is an extension of $\alpha$ If R is reversible and $\alpha$ satisfies the condition that ab = 0 implies $a{\alpha}(b)=0$ for any a, b $\in$ R, then the ring R[x]/($x^n$) is weak $\bar{\alpha}$-skew Armendariz, where ($x^n$) is an ideal generated by $x^n$, n is a positive integer and $\bar{\alpha}\;:\;R[x]/(x^n)\;{\rightarrow}\;R[x]/(x^n)$ is an extension of $\alpha$. If $\alpha$ also satisfies the condition that ${\alpha}^t\;=\;1$ for some positive integer t, the ring R[x] (resp, R[x; $\alpha$) is weak $\bar{\alpha}$-skew (resp, weak) Armendariz, where $\bar{\alpha}\;:\;R[x]\;{\rightarrow}\;R[x]$ is an extension of $\alpha$.

ON (α, δ)-SKEW ARMENDARIZ RINGS

  • MOUSSAVI A.;HASHEMI E.
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.2
    • /
    • pp.353-363
    • /
    • 2005
  • For a ring endomorphism $\alpha$ and an $\alpha$-derivation $\delta$, we introduce ($\alpha$, $\delta$)-skew Armendariz rings which are a generalization of $\alpha$-rigid rings and Armendariz rings, and investigate their properties. A semi prime left Goldie ring is $\alpha$-weak Armendariz if and only if it is $\alpha$-rigid. Moreover, we study on the relationship between the Baerness and p.p. property of a ring R and these of the skew polynomial ring R[x; $\alpha$, $\delta$] in case R is ($\alpha$, $\delta$)-skew Armendariz. As a consequence we obtain a generalization of [11], [14] and [16].

SKEW LAURENT POLYNOMIAL EXTENSIONS OF BAER AND P.P.-RINGS

  • Nasr-Isfahani, Alireza R.;Moussavi, Ahmad
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.6
    • /
    • pp.1041-1050
    • /
    • 2009
  • Let R be a ring and ${\alpha}$ a monomorphism of R. We study the skew Laurent polynomial rings R[x, x$^{-1}$; ${\alpha}$] over an ${\alpha}$-skew Armendariz ring R. We show that, if R is an ${\alpha}$-skew Armendariz ring, then R is a Baer (resp. p.p.-)ring if and only if R[x, x$^{-1}$; ${\alpha}$] is a Baer (resp. p.p.-) ring. Consequently, if R is an Armendariz ring, then R is a Baer (resp. p.p.-)ring if and only if R[x, x$^{-1}$] is a Baer (resp. p.p.-)ring.

RIGIDNESS AND EXTENDED ARMENDARIZ PROPERTY

  • Baser, Muhittin;Kaynarca, Fatma;Kwak, Tai-Keun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.1
    • /
    • pp.157-167
    • /
    • 2011
  • For a ring endomorphism of a ring R, Krempa called $\alpha$ rigid endomorphism if $a{\alpha}(a)$ = 0 implies a = 0 for a $\in$ R, and Hong et al. called R an $\alpha$-rigid ring if there exists a rigid endomorphism $\alpha$. Due to Rege and Chhawchharia, a ring R is called Armendariz if whenever the product of any two polynomials in R[x] over R is zero, then so is the product of any pair of coefficients from the two polynomials. The Armendariz property of polynomials was extended to one of skew polynomials (i.e., $\alpha$-Armendariz rings and $\alpha$-skew Armendariz rings) by Hong et al. In this paper, we study the relationship between $\alpha$-rigid rings and extended Armendariz rings, and so we get various conditions on the rings which are equivalent to the condition of being an $\alpha$-rigid ring. Several known results relating to extended Armendariz rings can be obtained as corollaries of our results.

GENERALIZED SEMI COMMUTATIVE RINGS AND THEIR EXTENSIONS

  • Baser, Muhittin;Harmanci, Abdullah;Kwak, Tai-Keun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.45 no.2
    • /
    • pp.285-297
    • /
    • 2008
  • For an endomorphism ${\alpha}$ of a ring R, the endomorphism ${\alpha}$ is called semicommutative if ab=0 implies $aR{\alpha}(b)$=0 for a ${\in}$ R. A ring R is called ${\alpha}$-semicommutative if there exists a semicommutative endomorphism ${\alpha}$ of R. In this paper, various results of semicommutative rings are extended to ${\alpha}$-semicommutative rings. In addition, we introduce the notion of an ${\alpha}$-skew power series Armendariz ring which is an extension of Armendariz property in a ring R by considering the polynomials in the skew power series ring $R[[x;\;{\alpha}]]$. We show that a number of interesting properties of a ring R transfer to its the skew power series ring $R[[x;\;{\alpha}]]$ and vice-versa such as the Baer property and the p.p.-property, when R is ${\alpha}$-skew power series Armendariz. Several known results relating to ${\alpha}$-rigid rings can be obtained as corollaries of our results.

ON COEFFICIENTS OF NILPOTENT POLYNOMIALS IN SKEW POLYNOMIAL RINGS

  • Nam, Sang Bok;Ryu, Sung Ju;Yun, Sang Jo
    • Korean Journal of Mathematics
    • /
    • v.21 no.4
    • /
    • pp.421-428
    • /
    • 2013
  • We observe the basic structure of the products of coefficients of nilpotent (left) polynomials in skew polynomial rings. This study consists of a process to extend a well-known result for semi-Armendariz rings. We introduce the concept of ${\alpha}$-skew n-semi-Armendariz ring, where ${\alpha}$ is a ring endomorphism. We prove that a ring R is ${\alpha}$-rigid if and only if the n by n upper triangular matrix ring over R is $\bar{\alpha}$-skew n-semi-Armendariz. This result are applicable to several known results.

ON ANNIHILATOR IDEALS OF A NEARRING OF SKEW POLYNOMIALS OVER A RING

  • Hashemi, Ebrahim
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.6
    • /
    • pp.1267-1279
    • /
    • 2007
  • For a ring endomorphism ${\alpha}$ and an ${\alpha}-derivation\;{\delta}$ of a ring R, we study relation between the set of annihilators in R and the set of annihilators in nearring $R[x;{\alpha},{\delta}]\;and\;R_0[[x;{\alpha}]]$. Also we extend results of Armendariz on the Baer and p.p. conditions in a polynomial ring to certain analogous annihilator conditions in a nearring of skew polynomials. These results are somewhat surprising since, in contrast to the skew polynomial ring and skew power series case, the nearring of skew polynomials and skew power series have substitution for its "multiplication" operation.

ON STRONG REVERSIBLE RINGS AND THEIR EXTENSIONS

  • Baser, Muhittin;Kwak, Tai Keun
    • Korean Journal of Mathematics
    • /
    • v.18 no.2
    • /
    • pp.119-132
    • /
    • 2010
  • P. M. Cohn called a ring R reversible if whenever ab = 0, then ba = 0 for $a,b{\in}R$. In this paper, we study an extension of a reversible ring with its endomorphism. An endomorphism ${\alpha}$ of a ring R is called strong right (resp., left) reversible if whenever $a{\alpha}(b)=0$ (resp., ${\alpha}(a)b=0$) for $a,b{\in}R$, ba = 0. A ring R is called strong right (resp., left) ${\alpha}$-reversible if there exists a strong right (resp., left) reversible endomorphism ${\alpha}$ of R, and the ring R is called strong ${\alpha}$-reversible if R is both strong left and right ${\alpha}$-reversible. We investigate characterizations of strong ${\alpha}$-reversible rings and their related properties including extensions. In particular, we show that every semiprime and strong ${\alpha}$-reversible ring is ${\alpha}$-rigid and that for an ${\alpha}$-skew Armendariz ring R, the ring R is reversible and strong ${\alpha}$-reversible if and only if the skew polynomial ring $R[x;{\alpha}]$ of R is reversible.