• Title/Summary/Keyword: $\Gamma$-semigroup

Search Result 27, Processing Time 0.017 seconds

THE ANNIHILATING-IDEAL GRAPH OF A RING

  • ALINIAEIFARD, FARID;BEHBOODI, MAHMOOD;LI, YUANLIN
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.6
    • /
    • pp.1323-1336
    • /
    • 2015
  • Let S be a semigroup with 0 and R be a ring with 1. We extend the definition of the zero-divisor graphs of commutative semigroups to not necessarily commutative semigroups. We define an annihilating-ideal graph of a ring as a special type of zero-divisor graph of a semigroup. We introduce two ways to define the zero-divisor graphs of semigroups. The first definition gives a directed graph ${\Gamma}$(S), and the other definition yields an undirected graph ${\overline{\Gamma}}$(S). It is shown that ${\Gamma}$(S) is not necessarily connected, but ${\overline{\Gamma}}$(S) is always connected and diam$({\overline{\Gamma}}(S)){\leq}3$. For a ring R define a directed graph ${\mathbb{APOG}}(R)$ to be equal to ${\Gamma}({\mathbb{IPO}}(R))$, where ${\mathbb{IPO}}(R)$ is a semigroup consisting of all products of two one-sided ideals of R, and define an undirected graph ${\overline{\mathbb{APOG}}}(R)$ to be equal to ${\overline{\Gamma}}({\mathbb{IPO}}(R))$. We show that R is an Artinian (resp., Noetherian) ring if and only if ${\mathbb{APOG}}(R)$ has DCC (resp., ACC) on some special subset of its vertices. Also, it is shown that ${\overline{\mathbb{APOG}}}(R)$ is a complete graph if and only if either $(D(R))^2=0,R$ is a direct product of two division rings, or R is a local ring with maximal ideal m such that ${\mathbb{IPO}}(R)=\{0,m,m^2,R\}$. Finally, we investigate the diameter and the girth of square matrix rings over commutative rings $M_{n{\times}n}(R)$ where $n{\geq} 2$.

A GENERAL VISCOSITY APPROXIMATION METHOD OF FIXED POINT SOLUTIONS OF VARIATIONAL INEQUALITIES FOR NONEXPANSIVE SEMIGROUPS IN HILBERT SPACES

  • Plubtieng, Somyot;Wangkeeree, Rattanaporn
    • Bulletin of the Korean Mathematical Society
    • /
    • v.45 no.4
    • /
    • pp.717-728
    • /
    • 2008
  • Let H be a real Hilbert space and S = {T(s) : $0\;{\leq}\;s\;<\;{\infty}$} be a nonexpansive semigroup on H such that $F(S)\;{\neq}\;{\emptyset}$ For a contraction f with coefficient 0 < $\alpha$ < 1, a strongly positive bounded linear operator A with coefficient $\bar{\gamma}$ > 0. Let 0 < $\gamma$ < $\frac{\bar{\gamma}}{\alpha}$. It is proved that the sequences {$x_t$} and {$x_n$} generated by the iterative method $$x_t\;=\;t{\gamma}f(x_t)\;+\;(I\;-\;tA){\frac{1}{{\lambda}_t}}\;{\int_0}^{{\lambda}_t}\;T(s){x_t}ds,$$ and $$x_{n+1}\;=\;{\alpha}_n{\gamma}f(x_n)\;+\;(I\;-\;{\alpha}_nA)\frac{1}{t_n}\;{\int_0}^{t_n}\;T(s){x_n}ds,$$ where {t}, {${\alpha}_n$} $\subset$ (0, 1) and {${\lambda}_t$}, {$t_n$} are positive real divergent sequences, converges strongly to a common fixed point $\tilde{x}\;{\in}\;F(S)$ which solves the variational inequality $\langle({\gamma}f\;-\;A)\tilde{x},\;x\;-\;\tilde{x}{\rangle}\;{\leq}\;0$ for $x\;{\in}\;F(S)$.

ROUGH PRIME IDEALS AND ROUGH FUZZY PRIME IDEALS IN GAMMA-SEMIGROUPS

  • Chinram, Ronnason
    • Communications of the Korean Mathematical Society
    • /
    • v.24 no.3
    • /
    • pp.341-351
    • /
    • 2009
  • The notion of rough sets was introduced by Z. Pawlak in the year 1982. The notion of a $\Gamma$-semigroup was introduced by M. K. Sen in the year 1981. In 2003, Y. B. Jun studied the roughness of sub$\Gamma$-semigroups, ideals and bi-ideals in i-semigroups. In this paper, we study rough prime ideals and rough fuzzy prime ideals in $\Gamma$-semigroups.

On the Ideal Extensions in Γ-Semigroups

  • Siripitukdet, Manoj;Iampan, Aiyared
    • Kyungpook Mathematical Journal
    • /
    • v.48 no.4
    • /
    • pp.585-591
    • /
    • 2008
  • In 1981, Sen [4] have introduced the concept of $\Gamma$-semigroups. We have known that $\Gamma$-semigroups are a generalization of semigroups. In this paper, we introduce the concepts of the extensions of s-prime ideals, prime ideals, s-semiprime ideals and semiprime ideals in $\Gamma$-semigroups and characterize the relationship between the extensions of ideals and some congruences in $\Gamma$-semigroups.

FUZZY INTERIOR $\Gamma$-IDEALS IN ORDERED $\Gamma$-SEMIGROUPS

  • Khan, Asghar;Mahmood, Tariq;Ali, M. Irfan
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.5_6
    • /
    • pp.1217-1225
    • /
    • 2010
  • In this paper we define fuzzy interior $\Gamma$-ideals in ordered $\Gamma$-semigroups. We prove that in regular(resp. intra-regular) ordered $\Gamma$-semigroups the concepts of fuzzy interior $\Gamma$-ideals and fuzzy $\Gamma$-ideals coincide. We prove that an ordered $\Gamma$-semigroup is fuzzy simple if and only if every fuzzy interior $\Gamma$-ideal is a constant function. We characterize intra-regular ordered $\Gamma$-semigroups in terms of interior (resp. fuzzy interior) $\Gamma$-ideals.

COMMUTATIVITY OF PRIME GAMMA NEAR RINGS WITH GENERALIZED DERIVATIONS

  • MARKOS, ADNEW;MIYAN, PHOOL;ALEMAYEHU, GETINET
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.5_6
    • /
    • pp.915-923
    • /
    • 2022
  • The purpose of the present paper is to obtain commutativity of prime Γ-near-ring N with generalized derivations F and G with associated derivations d and h respectively satisfying one of the following conditions:(i) G([x, y]α = ±f(y)α(xoy)βγg(y), (ii) F(x)βG(y) = G(y)βF(x), for all x, y ∈ N, β ∈ Γ (iii) F(u)βG(v) = G(v)βF(u), for all u ∈ U, v ∈ V, β ∈ Γ,(iv) if 0 ≠ F(a) ∈ Z(N) for some a ∈ V such that F(x)αG(y) = G(y)αF(x) for all x ∈ V and y ∈ U, α ∈ Γ.

A CONSTRUCTION OF COMMUTATIVE NILPOTENT SEMIGROUPS

  • Liu, Qiong;Wu, Tongsuo;Ye, Meng
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.3
    • /
    • pp.801-809
    • /
    • 2013
  • In this paper, we construct nilpotent semigroups S such that $S^n=\{0\}$, $S^{n-1}{\neq}\{0\}$ and ${\Gamma}(S)$ is a refinement of the star graph $K_{1,n-3}$ with center $c$ together with finitely many or infinitely many end vertices adjacent to $c$, for each finite positive integer $n{\geq}5$. We also give counting formulae to calculate the number of the mutually non-isomorphic nilpotent semigroups when $n=5$, 6 and in finite cases.