• 제목/요약/키워드: $\180^{\circ}$

검색결과 2,128건 처리시간 0.042초

원형 단면을 갖는 180° 굽은 곡관내 발달하는 난류유동에 관한 수치해석 (Numerical Simulation of Developing Turbulent Flow in a Circular Pipe of 180° Bend)

  • 명현국
    • 대한기계학회논문집B
    • /
    • 제30권10호
    • /
    • pp.966-972
    • /
    • 2006
  • A numerical simulation is performed fur developing turbulent flow in a strongly curved 180 deg pipe and its downstream tangent by a new solution code(PowerCFD) which adopts an unstructured cell-centered method. The governing equations are discretized as the full elliptic from of the equations of motion. Three typical two-equation turbulence models of low-Reynolds-number form are used to approximate the turbulent stress field. Solutions fur both streamwise and circumferential velocity components are compared with the experimental data by Azzola et at.(1986). The ${\kappa}-{\omega}$ model by Wilcox(1988) is found to give better prediction performance than the other two. Predicted secondary velocities and streamwise velocity component contours at sequential longitudinal stations are also presented in order to enable a detailed description of the complete flow. It is also found that, in the bend both mean streamwise and secondary velocities never achieve a fully-developed state and the code is capable of producing very well the complex nature of steady flow in a strongly curved pipe.

밀리미터파 시스템 적용을 위한 5GHz, 0/180도 능동 위상변환기 설계 (5GHz, 0°/ 180° Active Phase Shifter Design for Millimeter-Wave Applications)

  • 박찬규;신동화;이동호
    • 한국위성정보통신학회논문지
    • /
    • 제12권2호
    • /
    • pp.61-64
    • /
    • 2017
  • 밀리미터파 위상배열시스템에 위상변환기는 개별안테나의 위상을 조절하는 핵심 부품이다. 본 논문은 손실이 큰 실리콘 웨이퍼의 위상변환기에 적용을 위한 설계 기법을 5GHz에서 검증한 내용을 담는다. 0/180도 2-State 위상변환기가 제작되었으며 그것은 2개의 2-Stage AMP를 병렬로 구성하였다. 각 State의 Gain을 동일하게 유지하기 위해서 0/180도 Delay 라인을 2-Stage AMP의 각 Stage 중간에 삽입하였다. 통상적으로 AMP를 병렬 연결할 때 Wilkinson Power Combiner/Divider과 같은 수동회로를 추가하지만 실리콘 웨이퍼에서는 이것으로 인해 큰손실이 발생할 수 있으므로 생략하고 직접 연결하였다. 제작결과 5GHz에서 12dB이득, 174도 위상차를 확인하여 본 설계 기법을 검증하였다.

고전압용 실리콘 고무의 전기적 특성 (Electrical Properties of Silicone Rubber for High-Voltage)

  • 김왕곤;홍진웅
    • 한국안전학회지
    • /
    • 제15권4호
    • /
    • pp.41-46
    • /
    • 2000
  • Silicone rubbers are elastomeric materials and organic copolymers, of which backbone is siloxane with high bonding strength. Silicone rubbers have been used as an power insulator because they are well weather proof, ozone proof and have excellent electric characteristics, thermal stability, cold resistance and low surface energy. Especially, it is known that they have very excellent characteristics at 200[$^{\circ}C$]. For this study, we made silicone rubbers as specimens and measured volume resistivity due to applied voltage and a variation of temperature 25[$^{\circ}C$] to 180[$^{\circ}C$]. Also we measured dielectric loss tangent due to applied voltage at temperature range 25[$^{\circ}C$] to 180[$^{\circ}C$] and frequency range 20[Hz] to 1${\times}10^6$[Hz].

  • PDF

SHS법에 의한 15R-Sialon의 제조 및 특성 (Preparation and Properties of 15R-Sialon by SHS)

  • 김상섭;이온영;이철규;전병세
    • 한국세라믹학회지
    • /
    • 제31권4호
    • /
    • pp.407-414
    • /
    • 1994
  • Compacts were prepared using the SHS(Self-propagating High-temperature Synthesis) method and nitrided at temperatures range from 145$0^{\circ}C$ to 175$0^{\circ}C$, and pressed at 180$0^{\circ}C$ under N2 atmosphere. The samples were characterized for bulk density, porosity, pore size and distribution, phase composition, microstructure and fracture toughness. Compacts were composed of whiskers, which showed a good candidate for the composite materials. The major phases of the compacts nitrided at 175$0^{\circ}C$ and pressed at 180$0^{\circ}C$ were 15R-sialon with a large aspect ratio.

  • PDF

An Investigation of Heat Transfer Characteristics of Swirling Flow in a 180$^{\circ}$ Circular Section Bend with Uniform Heat Flux

  • Chang, Tae-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • 제17권10호
    • /
    • pp.1520-1532
    • /
    • 2003
  • An experiment was performed to obtain the local heat transfer coefficient and Nusselt number in a circular duct with a 180$^{\circ}$ bend for Re=6 x 10$^4$, 8 x 10$^4$ and 1 x 10$\^$5/ under swirling flow and non-swirling flow conditions. The test tube with a circular section was made from stainless steel having a curvature ration of 9.4. Current heat flux of 5.11 kW/㎡ was applied to the test tube by electrical power and the swirling motion of air was produced by a tangential inlet to the pipe axis at 180$^{\circ}$. Measurements of local wall temperatures and the bulk mean temperatures of air were made at four circumferential positions at 16 stations. The wall temperatures showed a reduced distribution curve at the bend for the non-swirling flow, but this effect did not appear for the swirling flow. The Nusselt number distributions for the swirling flow, which was calculated from the measured wall and the bulk temperatures, were higher than that of the non-swirling flow. The average Nusselt number of the swirling flow increased by about 90-100%, compared to that of the non-swirling flow. The Nu/Nu$\_$DB/ values at the 90$^{\circ}$ station for non-swirling flow and swirling flow were approximately 2.5 and 4.8 at Re=6x10$^4$ respectively. The values agree well with Said's results for non-swirling flow.

곡관덕트내의 입구영역에서 난류 맥동유도의 유동특성 (Flows Characteristics of Developing Turbulent Pulsating Flows in a curved Square Duct)

  • 봉태근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제23권4호
    • /
    • pp.533-542
    • /
    • 1999
  • In this study the flow characteristics of developing turbulent pulsating flows in a square-sec-tional 180。 curved duct are investigated experimentally. The experimental study of air flow in a square-sectional curved duct is carried out to measure axial velocity distribution secondary flow velocity profiles and wall shear stress distributions by using a Laser Doppler Velocimetry system with the data acquisition and processing system of Rotating Machinery Resolver (RMR) and PHASE software at the entrance region of the duct which is divided into 7 sections from the inlet(${{\o}}=0_{\circ}$) to the outlet (${{\o}}=180_{\circ}$) in $30_{\circ}$ intervals. The results obtained from the study are summarized as follows: (1) The time-averaged critical Dean number of turbulent pulsating flow(De ta, cr) is greater than $75{\omega}+$ It is understood that the critical Dean number and the critical Reynolds number are related to the dimensionless angular frequency in a curved duct. (2) Axial velocity profiles of turbulent pulsating flows are of an annular type similar to those of turbulent stead flows. (3) Secondary flows of trubulent pulsating flows are strong and complex at the entrance region. As velocity amplitudes(A1) become larger secondary flows become stronger. (4) Wall shear stress distributions of turbulent pulsating flows in a square-sectional $180_{\circ}$ curved duct are exposed variously in the outer wall and are stabilized in the inner wall without regard to the phase angle.

  • PDF

Water Absorption and Dimensional Stability of Heat-treated Fast-growing Hardwoods

  • PRIADI, Trisna;SHOLIHAH, Maratus;KARLINASARI, Lina
    • Journal of the Korean Wood Science and Technology
    • /
    • 제47권5호
    • /
    • pp.567-578
    • /
    • 2019
  • A common problem with fast-growing hardwoods is dimensional instability that limits use of their wood. In this study, we investigated the effects of pre-drying methods, temperatures, and heating duration on the specific gravity, water absorption, and dimensional stability of three tropical fast-growing hardwoods, jabon (Neolamarckia cadamba Roxb.), sengon (Falcataria moluccana Miq.), and mangium (Acacia mangium Willd.). Wood samples were pre-dried by two methods (fan and oven at $40^{\circ}C$), and heat treatments were performed at three temperatures (120, 150, and $180^{\circ}C$) for two different time periods (2 and 6 hours). The specific gravity, water absorption, dimensional stability, and structural changes of the samples were evaluated. The results revealed that heat treatments slightly reduced the specific gravity of all three wood species. In addition, the heat treatments reduced water absorption and significantly improved dimensional stability of the samples. Oven pre-drying followed by heat treatment at $180^{\circ}C$ for 6 hours resulted in good physical improvement of jabon and sengon wood. Fan pre-drying followed by heat treatment at $180^{\circ}C$ for 2 hours improved the physical properties of mangium wood. The heat treatment shows a promising technique for improving the physical characteristic of fast growing hardwoods.

열전도 측정에 의한 Pb5Ge3O11 단결정의 상전이 (The Phase Transition of Pb5Ge3O11 Single Crystal by the Thermal Conduction Measurement)

  • 정맹식
    • 한국안광학회지
    • /
    • 제4권2호
    • /
    • pp.165-169
    • /
    • 1999
  • 시료의 한 부분에 순간적으로 가열하여 시료의 특정 부분의 온도변화를 조사함으로써 시료의 열 확산도를 측정하였다. $Pb_5Ge_3O_{11}$ 단결정의 환산 열 확산도는 trigonal 구조인 $30^{\circ}C$에서는 $0.0117cm^2/^{\circ}C$, curie point 근방인 $178^{\circ}C$에서는 $0.0105cm^2/^{\circ}C$이며 hexagonal 구조인 $180^{\circ}C$에서는 0.0112cm로 각각 나타났다. 이는 $Pb_5Ge_3O_{11}$ 단결정을 같은 열량으로 가열하였을 때, 실온에서 curie 온도쪽으로 갈 때 가열 효과가 적었으며 curie point에서 최소가 되었다가 curie 온도 이상에서는 갑자기 증가하여 일정하게 되었다. 따라서 $Pb_5Ge_3O_{11}$ 단결정의 상전이 용도가 1m 근방임을 확인하였다.

  • PDF

Pure Bending Moment 하(下)에 있는 Notched Strip에서의 Notch Angle의 비대칭적(非對稱的) 변화(變化)에 의(依)한 응력집중계수(應力集中係數)의 변화(變化) (A Photoelastic Study on Change of Stress Concentration Factor Due to Unsymmetrical Change of Notch Angle)

  • 문장출
    • 대한조선학회지
    • /
    • 제4권1호
    • /
    • pp.55-58
    • /
    • 1967
  • It is investigated that in what shape the stress concentration factor of a notched strip under pure bending changes due to unsymmetrically varying notch angle. Four models made of CR-39, having parameters of r/d-0.225, h/r=4; r/d=0.225, h/r=2; r/d=0.4, h/r=4 and r/d=0.4, h/r=2 respectively as shown in Fig.1, Fig.2 and Table are tested with the use of polariscope. For each model, notch angle is unsymmetrically varied from $0^{\circ}$ to $180^{\circ}$ at intervals of $15^{\circ}$ as shown in Fig. 1 and Fig. 2. The results of this experiment are Fig. 7 and Fig. 8 and the following are deduced. As notch angle increases 1) from $0^{\circ}$ to $50^{\circ}$, the decrement of concentration factor is slight. 2) from $50^{\circ}$ to 90, the decrement of concentration factor is a little steeper. 3) from $30^{\circ}$ to $140^{\circ}$, the decrement of concentration factor is slight. 4) from $140^{\circ}$ to $180^{\circ}$, the decrement is very steep with an abrupt with an abrupt change in the neighborhood of $140^{\circ}$.

  • PDF

날개짓에 의한 공중정지비행의 이차원 메카니즘 (Two-Dimensional Mechanism of Hovering Flight by Flapping Wings)

  • 김도균;최해천
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.759-764
    • /
    • 2003
  • Numerical simulations are conducted to investigate the mechanism of hovering flight by single flapping wing, and to examine the effect of the phase difference between the fore- and hindwings in hovering flight by two flapping wings. The numerical method used is based on an immersed boundary method in Cartesian coordinates. The Reynolds number considered is Re=150 based on the maximum translational velocity and chord length of the wing. For single flapping wing, the stroke plane angles are $0^{\circ}$, $30^{\circ}$, $60^{\circ}$, $75^{\circ}$ and $90^{\circ}$ and the downstroke angles of attack are varied for each stroke angle. Results show that for each stroke plane angle, there is an optimal angle of attack to maximize the vertical force. Below the stroke angle of $60^{\circ}$, wake capturing reduces the negative vertical force during the upstroke. For two flapping wings, The phase lags of the hindwing are $0^{\circ}$, $90^{\circ}$, $180^{\circ}$ and $270^{\circ}$. The amplitudes of the stroke are 2.5 and 4.0 times the chord length at each phase lag. The results show that maximum vertical force is generated when the phase lag is zero, and the amplitude of the vertical force is minimum at the phase lag of $180^{\circ}$.

  • PDF