• Title/Summary/Keyword: $[^{11}C]Methylation$

Search Result 34, Processing Time 0.027 seconds

Hypoxia suffocates histone demethylases to change gene expression: a metabolic control of histone methylation

  • Park, Hyunsung
    • BMB Reports
    • /
    • v.50 no.11
    • /
    • pp.537-538
    • /
    • 2017
  • Hypoxia affects various physiological and pathophyological processes. Hypoxia changes the expression of hypoxia-responsive genes through two main pathways. First, hypoxia activates transcription factors (TF) such as Hypoxia-inducible Factor (HIF). Second, hypoxia decreases the activity of Jumonji C domain-containing histone demethylases (JMJDs) that require $O_2$ and ${\alpha}$-Ketoglutarate (${\alpha}$-KG) as substrates. The JMJDs affect gene expression through their regulation of active or repressive histone methylations. Profiling of H3K4me3, H3K9me3, and H3K27me3 under both normoxia and hypoxia identified 75 TFs whose binding motifs were significantly enriched in the methylated regions of the genes. TFs showing similar binding strengths to their target genes might be under the 'metabolic control' which changes histone methylation and gene expression by instant changing catalytic activities of resident histone demethylases.

Disease Progression from Chronic Hepatitis C to Cirrhosis and Hepatocellular Carcinoma is Associated with Increasing DNA Promoter Methylation

  • Zekri, Abd El-Rahman Nabawy;Nassar, Auhood Abdel-Monem;El-Rouby, Mahmoud Nour El-Din;Shousha, Hend Ibrahim;Barakat, Ahmed Barakat;El-Desouky, Eman Desouky;Zayed, Naglaa Ali;Ahmed, Ola Sayed;Youssef, Amira Salah El-Din;Kaseb, Ahmed Omar;El-Aziz, Ashraf Omar Abd;Bahnassy, Abeer Ahmed
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6721-6726
    • /
    • 2013
  • Background: Changes in DNA methylation patterns are believed to be early events in hepatocarcinogenesis. A better understanding of methylation states and how they correlate with disease progression will aid in finding potential strategies for early detection of HCC. The aim of our study was to analyze the methylation frequency of tumor suppressor genes, P14, P15, and P73, and a mismatch repair gene (O6MGMT) in HCV related chronic liver disease and HCC to identify candidate epigenetic biomarkers for HCC prediction. Materials and Methods: 516 Egyptian patients with HCV-related liver disease were recruited from Kasr Alaini multidisciplinary HCC clinic from April 2010 to January 2012. Subjects were divided into 4 different clinically defined groups - HCC group (n=208), liver cirrhosis group (n=108), chronic hepatitis C group (n=100), and control group (n=100) - to analyze the methylation status of the target genes in patient plasma using EpiTect Methyl qPCR Array technology. Methylation was considered to be hypermethylated if >10% and/or intermediately methylated if >60%. Results: In our series, a significant difference in the hypermethylation status of all studied genes was noted within the different stages of chronic liver disease and ultimately HCC. Hypermethylation of the P14 gene was detected in 100/208 (48.1%), 52/108 (48.1%), 16/100 (16%) and 8/100 (8%) among HCC, liver cirrhosis, chronic hepatitis and control groups, respectively, with a statistically significant difference between the studied groups (p-value 0.008). We also detected P15 hypermethylation in 92/208 (44.2%), 36/108 (33.3%), 20/100 (20%) and 4/100 (4%), respectively (p-value 0.006). In addition, hypermethylation of P73 was detected in 136/208 (65.4%), 72/108 (66.7%), 32/100 (32%) and 4/100 (4%) (p-value <0.001). Also, we detected O6MGMT hypermethylation in 84/208 (40.4%), 60/108 (55.3%), 20/100 (20%) and 4/100 (4%), respectively (p value <0.001. Conclusions: The epigenetic changes observed in this study indicate that HCC tumors exhibit specific DNA methylation signatures with potential clinical applications in diagnosis and prognosis. In addition, methylation frequency could be used to monitor whether a patient with chronic hepatitis C is likely to progress to liver cirrhosis or even HCC. We can conclude that methylation processes are not just early events in hepatocarcinogenesis but accumulate with progression to cancer.

Development of an Automated System for the Routine Preparation of Carbon-11 Labeled Radiopharmaceuticals

  • 오승준;최연성;최용;김상은;이경한;김병태;김영서;하현준
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.9
    • /
    • pp.952-956
    • /
    • 1998
  • An automated system was developed for the routine preparation of carbon-11 ($^11C$) labeled radiopharmaceuticals, which consisted of three major parts including [$^11C$]methylation of the precursor with [$^11C$] iodomethane ($[^11C]CH_3I)$, purification of the desired product and formulation of the final $^11C$ labeled radiopharmaceutical. The whole system included seven three-way slider valves, eleven solenoid valves, four pneumatic cylinders, a HPLC (High Performance Liquid Chromatography) system and a rotary evaporator. Using this system, we investigated the radiochemical synthesis of L-[$methyl-^11C$]methionine, which is the most widely used amino acid in tumor PET (Positron Emission Tomography) studies. The overall operation took 3035 min including the production of $[^11C]CH_3I$ (10.5 min) and decay-corrected radiochemical yield was 25%. The automated system we described herein can be widely utilized for the preparation of many $^11C$ labeled radiopharinaceuticals and has been shown to be efficient, reliable and easy to operate.

Combined Cytogenetic and Molecular Analyses for the Diagnosis of Prader-Willi/Angelman Syndromes

  • Borelina, Daniel;Engel, Nora;Esperante, Sebastian;Ferreiro, Veronica;Ferrer, Marcela;Torrado, Maria;Goldschmidt, Ernesto;Francipane, Liliana;Szijan, Irene
    • BMB Reports
    • /
    • v.37 no.5
    • /
    • pp.522-526
    • /
    • 2004
  • Prader-Willi (PWS) and Angelman (AS) are syndromes of developmental impairment that result from the loss of expression of imprinted genes in the paternal (PWS) or maternal (AS) 15q11-q13 chromosome. Diagnosis on a clinical basis is difficult in newborns and young infants; thus, a suitable molecular test capable of revealing chromosomal abnormalities is required. We used a variety of cytogenetic and molecular approaches, such as, chromosome G banding, fluorescent in situ hybridization, a DNA methylation test, and a set of chromosome 15 DNA polymorphisms to characterize a cohort of 27 PWS patients and 24 suspected AS patients. Molecular analysis enabled the reliable diagnosis of 14 PWS and 7 AS patients, and their classification into four groups: (A) 6 of these 14 PWS subjects (44%) had deletions of paternal 15q11-q13; (B) 4 of the 7 AS patients had deletions of maternal 15q11-q13; (C) one PWS patient (8%) had a maternal uniparental disomy (UPD) of chromosome 15; (D) the remaining reliably diagnoses of 7 PWS and 3 AS cases showed abnormal methylation patterns of 15q11-q13 chromosome, but none of the alterations shown by the above groups, although they may have harbored deletions undetected by the markers used. This study highlights the importance of using a combination of cytogenetic and molecular tests for a reliable diagnosis of PWS or AS, and for the identification of genetic alterations.

Simple and Highly Efficient Synthesis of [$^{11}C$]methionine Using Solid-Phase Extraction Method (고정상 추출법을 이용한 효율적인 [$^{11}C$]methionine의 합성)

  • Lim, Sung-Jae;Moon, Woo-Yeon;Choi, Jae-Chil;Cho, Shee-Man;Oh, Seung-Jun
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.12 no.3
    • /
    • pp.181-183
    • /
    • 2008
  • We developed simple and highly efficient synthesis method for [$^{11}C$]methionine using solid-phase extraction method. For synthesis, we used C18 cartridge. [$^{11}C$]methionine was synthesized on C18 cartridge according to the solid-phase [$^{11}C$]methylation of precursor L-homocysteine thiolactone hydrochloride. The radiochemical yields of [$^{11}C$]methionine was $48.9{\pm}7.93%$ decay corrected (results of 30 syntheses, mean$\pm$SD), with average production higher than 180 mCi. This procedure showed high yield and simple synthesis of [$^{11}C$]methionine.

  • PDF

Aberrant Epigenetic Alteration in Eca9706 Cells Modulated by Nanoliposomal Quercetin Combined with Butyrate Mediated via Epigenetic-NF-κB Signaling

  • Zheng, Nai-Gang;Wang, Jun-Ling;Yang, Sheng-Li;Wu, Jing-Lan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.11
    • /
    • pp.4539-4543
    • /
    • 2014
  • Since the epigenetic alteration in tumor cells can be reversed by the dietary polyphenol quercetin (Q) or butyrate (B) with chemopreventive activity, suggesting that Q or B can be used for chemopreventive as well as therapeutic agent against tumors. In this study the polyphenol flavonoid quercetin (Q) or sodium butyrate (B) suppressed human esophageal 9706 cancer cell growth in dose dependent manner, and Q combined with B (Q+B) could further inhibit Eca9706 cell proliferation than that induced by Q or B alone, compared with untreated control group (C) in MTT assay. The reverse expressions of global DNMT1, $NF-{\kappa}Bp65$, HDAC1 and Cyclin D1 were down-regulated, while expressions of caspase-3 and $p16INK4{\alpha}$ were up-regulated, compared with the C group in immunoblotting; the down-regulated HDAC1-IR (-immunoreactivity) with nuclear translocation, and up-regulated E-cadherin-IR demonstrated in immunocytochemistry treated by Q or B, and Q+B also displayed further negatively and positively modulated effects compared with C group. The order of methylation specific (MS) PCR of $p16INK4{\alpha}$: C>B/Q>Q+B group, while the order of E-cadherin expression level was contrary, Q+B>Q/B>C group. Thus, Q/B, especially Q+B display reverse effect targeting both altered DNA methylation and histone acetylation, acting as histone deacetylase inhibitor mediated via epigenetic-$NF-{\kappa}B$ cascade signaling.

The rapid synthetic strategy of [11C]PIB via disposable column cartridge purification

  • Jihye Lee;Yansheng Li;Sang-Yoon Lee;Tatsuo Ido
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.6 no.2
    • /
    • pp.69-74
    • /
    • 2020
  • PIB is the first amyloid plaque PET image tracer reported for the first time in 2003, and is considered to be the best and is still being utilized due to its very high uptake and kinetic properties. Initially, it was synthesized by radioisotope labeling using a precursor containing a methoxy methyl protection group, but now it is synthesized using a 6-OH precursor that can be easily synthesized in one step using [11C]methyl triflate. Carbon-11 has several limitations in clinical studies using PET because its half-life is as short as 20 minutes. In this study, in order to overcome the difficulty of this half-life, a rapid method using Sep-Pak was adopted instead of HPLC purification to significantly reduce the burden of the purification process and attempted synthesis. As a result, the synthesis time was shortened by more than 50%, and the yield of the final compound was higher than the previous result and showed relatively high specific radioactivity, confirming that it is a strategic method with high applicability for various precursors having primary amines.

Regulation of Histone Acetylation and Methylation of the p11 Gene in the Hippocampus of Chronic Unpredictable Stress-induced Depressive Mice (장기간 예측 불가능한 스트레스를 받은 마우스 해마에서 p11 유전자의 히스톤 아세틸화 및 메틸화의 조절)

  • Seo, Mi Kyoung;Seog, Dae-Hyun;Park, Sung Woo
    • Journal of Life Science
    • /
    • v.31 no.11
    • /
    • pp.995-1003
    • /
    • 2021
  • Chromatin remodeling regulates gene expression through epigenetic mechanisms. Aberrations in histone modification have been associated with depression-like behaviors in animal models. Additionally, growing evidence also indicates that epigenetic modification is associated with depression. p11 (S100A10) has been implicated in the pathophysiology of depression both in human and rodent models. In the present study, we investigated alterations in histone acetylation and methylation at the promoter of the p11 gene in the hippocampus of mice subjected to chronic unpredictable stress (CUS). C57BL/6 mice were exposed to CUS daily for 3 weeks. Depression-like behaviors were measured with the forced swimming test (FST). The levels of hippocampal p11 expression were analyzed by quantitative real-time polymerase chain reaction (PCR) and Western blotting. The levels of acetylated and methylated histone H3 at the promoter of p11 were measured by chromatin immunoprecipitation followed by real-time PCR. CUS-exposed mice displayed depression-like behaviors with prolonged immobility in FST. CUS led to significant decreases in the expression of p11 at both protein and mRNA levels. Meanwhile, there was a decrease in histone H3 acetylation (Ac-H3) and H3-K4 trimethylation (H3K4met3) and an increase in H3-K27 trimethylation (H3K27met3) at the p11 promoter. These results indicate that chronic stress causes the epigenetic suppression of p11 expression in the hippocampus.

Theoretical Studies on the Gas-Phase Pyrolysis of Esters The effect of ${\alpha}$- and ${\beta}$-methylation of Ethyl Formates

  • Ikchoon Lee;Ok Ja Cha;Bon-Su Lee
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.1
    • /
    • pp.49-54
    • /
    • 1990
  • The gas-phase thermolysis reactions of ${\alpha}$- and ${\beta}$-methylated ethyl formates, Y = $CH-X-CHR_1CH_2R_2$ where X = Y = O or S and $R_1\;=\;R_2$ = H or $CH_3$, are investigated theoretically using the AM1 method. The experimental reactivity order is reproduced correctly by AM1 in all cases. The thermolysis proceeds through a six-membered cyclic transition state conforming to a retro-ene reaction, which can be conveniently interpreted using the frontier orbital theory of three-species interactions. The methyl group substituted at $C_{\alpha}\;or\;C_{\beta}$ is shown to elevate the ${\pi}$-HOMO of the donor fragment (Y = C) and depress the ${\sigma}^{\ast}$-LUMO of the acceptor fragment ($C_{\beta}$-H), increasing the nucleophilicity of Y toward ${\beta}$-hydrogen which in turn increases the reactivity. The two bond breaking processes of the $C_{\alpha}$-X and $C_{\beta}$-H bonds are concerted but not synchronous so that the reaction takes place in two stages as Taylor suggested. The initial cleavage of $C_{\alpha}$-X is of little importance but the subsequent scission of $C_{\beta}$-H occurs in a rate determining stage.

Identification of a Sequence Containing Methylated Cytidine in Corynebacterium glutamicum and Brevibacterium flavum Using Bisulfite DNA Derivatization and Sequencing

  • Jang, Ki-Hyo;Chambers, Paul J.;Britz, Margaret L.
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.5
    • /
    • pp.819-824
    • /
    • 2001
  • The principal DNA modification systems of the amino-acid-producing bacteria Corynebacterium glutamicum AS019, Brevibacterium flavum BF4, and B. lactofermentum BL1 was investigated using two approaches; digestion of plasmid DNA isolated from these species TseI and Fnu4HI, and sequence analysis of the putative methyltransferase target sites following the derivatization of DNA using metabisulfite treatment. The C. glutamicum and B. flavum strains showed similar digestion patterns to the two enzymes, indicating that the target for cytidine methyltransferase recognizes 5'-GCSGC-3'(where S is either G or C). Mapping the methylated cytidine sites by bisulfite derivatization, followed by PCR amplification and sequencing, was only possible when the protocol included an additional step eliminating any underivatized DNA after PCR amplification, thereby indicating that the derivatization was not $100\%$ efficient. This may have been due to the high G0C content of this genus. It was confirmed that C. glutamicum AS019 and B. flavum BF4 methylated the cytidine in the $Gm^5CCGC$ sequences, yet there were no similar patterns of methylation in B. lactofermentum, which was consistent with the distinctive degradation pattern seen for the above enzymes. These findings demonstrate the successful application of a modified bisulfite derivatization method with the Corynebacterium species for determining methylation patterns, and showed that different species in the geneus contain distinctive restriction and modification systems.

  • PDF