• Title/Summary/Keyword: $(La, Sr)MnO_3$

Search Result 205, Processing Time 0.026 seconds

Thermal Instability of La0.6Sr0.4MnO3 Thin Films on Fused Silica

  • Sun, Ho-Jung
    • Korean Journal of Materials Research
    • /
    • v.21 no.9
    • /
    • pp.482-485
    • /
    • 2011
  • $La_{0.6}Sr_{0.4}MnO_3$ (LSMO) thin films, which are known as colossal magnetoresistance materials, were prepared on fused silica thin films by conventional RF magnetron sputtering, and the interfacial reactions between them were investigated by rapid thermal processing. Various analyses, namely, X-ray diffraction, transmission electron microscopy combined with energy adispersive X-ray spectrometry, and secondary ion mass spectrometry, were performed to explain the mechanism of the interfacial reactions. In the case of an LSMO film annealed at $800^{\circ}C$, the layer distinction against the underplayed $SiO_2$ was well preserved. However, when the annealing temperature was raised to $900^{\circ}C$, interdiffusion and interreaction occurred. Most of the $SiO_2$ and part of the LSMO became amorphous silicate that incorporated La, Sr, and Mn and contained a lot of bubbles. When the annealing temperature was raised to $950^{\circ}C$, the whole stack became an amorphous silicate layer with expanded bubbles. The thermal instability of LSMO on fused silica should be an important consideration when LSMO is integrated into Si-based solid-state devices.

Small Polaron Hopping Conduction of n=3 Ruddlesden-Popper Compound La2.1Sr1.9Mn3O10 System (n=3인 Ruddlesden-Popper형 La2.1Sr1.9Mn3O10의 Small polaron Hopping 전도)

  • Jung, Woo-Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.3
    • /
    • pp.294-298
    • /
    • 2002
  • Polycrystalline $La_{2.1}Sr_{1.9}Mn_3O_{10}$ with layered perovskite structure have been successfully synthesized and investigated with respect to their thermoelectric, electric and magnetic properties. The large magnetoresistance (MR) effect with $-{\Delta}{\rho}/{\rho}_0$ of ∼120% at 0.85T was observed in a wide temperature range below a cusp temperature in resistivity of about 120K, which is well below the magnetic $T_C$. At high temperature, a singnificant difference between the activation energy deduced from the electrical resistivity and thermoelectric power, a characteristic of small polaron, is observed. All of the experimental data can be well explained on the basis of the small polaron model.

Ce0.8Sm0.2O2 Sol-gel Modification on La0.8Sr0.2Mn0.8Cu0.2O3 Cathode for Intermediate Temperature Solid Oxide Fuel Cell

  • Lee, Seung Jin;Kang, Choon-Hyoung;Chung, Chang-Bock;Yun, Jeong Woo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.4
    • /
    • pp.77-82
    • /
    • 2015
  • To increase the performance of solid oxide fuel cell operating at intermediate temperature ($600^{\circ}C{\sim}800^{\circ}C$), $Sm_{0.2}Ce_{0.8}O_2$ (SDC) thin layer was applied to the $La_{0.8}Sr_{0.2}Mn_{0.8}Cu_{0.2}O_3$ (LSMCu) cathode by sol-gel coating method. The SDC was employed as a diffusion barrier layer on the yttria-stabilized zirconia(YSZ) to prevent the interlayer by-product formation of $SrZrO_3$ or $La_2Zr_2O_7$. The by-products were hardly formed at the electrolyte-cathode interlayer resulting to reduce the cathode polarization resistance. Moreover, SDC thin film was coated on the cathode pore wall surface to extend the triple phase boundary (TPB) area.

The Influence of Ferromagnetic $BaFe_{12}O_{19}$ Layer for Low-Field Tunnel-Type Magnetoresistance on $La_{2/3}Sr_{1/3}MnO_3/BaFe_{12}O_{19}/SiO_2/Si(001)$ Granular-Type Multilayer Thin Films ($La_{2/3}Sr_{1/3}MnO_3/BaFe_{12}O_{19}/SiO_2/Si(001)$ 입상형 다층박막 구조에서 강자성 $BaFe_{12}O_{19}$ 중간층이 저 자장 터널형 자기저항 특성에 미치는 영향)

  • 심인보;안성용;이희민;유홍주;김철성;최세영
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2001.10a
    • /
    • pp.48-49
    • /
    • 2001
  • PDF

Low Temperature Thermoelectric Power Properties in La2.1Sr1.9Mn3O10 System (저온에서의 La2.1Sr1.9Mn3O10 세라믹스의 열기전력 특성)

  • 정우환
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.9
    • /
    • pp.849-854
    • /
    • 2003
  • Temperature dependent thermoelectric power (TEP) of La$_{2.1}$ Sr$_{1.9}$ Mn$_3$O$_{10}$ system has been studied in the temperature range 80-373 K. In the low temperature ferromagnetic regime, TEP (S) follows an expression of formS=S$_{0}$ +S$_{1.5}$ T$^{1.5}$ +S$_4$T$^4$ over the wide range of temperature. The broad peak below the ferromagnetic transition and complicated temperature dependence of S may be understood on the basis of electron-magnon scattering as predicted for an itinerant ferromagnet. High temperature TEP data can be well fitted with Mott's small polaron hopping model.

A Study on the High Temperature Steam Electrolysis Using (La0.8Sr0.2)0.95MnO3/Yttria Stabilized Zirconia Composite Electrodes ((La0.8Sr0.2)0.95MnO3/Yttria Stabilized Zirconia 복합체 전극을 이용한 고온 수증기 전기분해 연구)

  • Ji, Jong-Sup;Kim, Chang-Hee;Kang, Yong;Sim, Kyu-Sung
    • Korean Chemical Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.627-631
    • /
    • 2005
  • The $(La_{0.8}Sr_{0.2})_{0.95}MnO_3$/yttria-stabilized zirconia (LSM/YSZ) composites were investigated as anode materials for high temperature steam electrolysis using X-ray diffractometry, scanning electron microscopy, galvanodynamic and galvanostatic polarization method. For this purpose, the LSMperovskites were fabricated in powders by co-precipitation method and then were mixed with 8 mol% YSZ powders in different molar ratios. The LSM/YSZ composites were deposited on 8 mol% YSZ electrolyte disks by means of a screen printing method, followed by sintering at temperatures above $1,100^{\circ}C$. From the experimental results, it is concluded that the electrochemical properties of LSM and the LSM/YSZ composites are closely related to their microstructure and operating temperatures.

Crystalline Structure and Electrical Transport Characteristics of ${La_{0.67}}{A_{0.33}}{MnO_{3-\$delta}}$ (A=Ca, Sr, Ba) Thin Films Prepared by PLD Techniques (PLD 기법으로 제조된 ${La_{0.67}}{A_{0.33}}{MnO_{3-\$delta}}$ (A=Ca, Sr, Ba) 박막의 결정구조 및 전기전도 특성)

  • 조남희;임세주;성건용
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.4
    • /
    • pp.370-379
    • /
    • 2001
  • PLD(pulsed laser deposition) 기법을 이용하여 LaAl $O_3$(100) 기판 위에 L $a_{0.67}$ $A_{0.33}$Mn $O_{3-{\delta}}$ (A=Ca, Sr, Ba) 에피 박막을 성장하였다. 박막의 격자 상수 및 스트레인 상태는 GID(grazing incidence X-ray diffraction)법과 투과 전자 현미경 법을 이용하여 조사하였다. 박막의 <001> 방향은 기판 표면의 수직방향에 평행하게 놓였으며, 박막의 단위포는 기판과의 격자 불일치에 기인하여 a/c=0.98인 의사-정방정 페롭스카이트(pseudo-tetragonal perovskite) 구조를 가졌다. A 자리의 양이온 반경이 증가함에 따라 단위포의 체적, $\varepsilon$$^{∥}$, 그리고 $\varepsilon$$_{⊥}$이 각각 증가하였다. L $a_{0.67}$ $A_{0.33}$Mn $O_{3-{\delta}}$ (A=Ca, Sr, Ba) 박막의 온도 및 자장에 따른 전기 전도 특성 MR(%), Tc, $T_{MI}$ 들을 조사하였으며, 이 결과들을 박막의 구조적 특성과 상관하여 고찰하였다.여 고찰하였다.

  • PDF

Metal-to-Insulator Transitions in La2/3Sr1/3MnO3/LaMnO3 (LSMO/LMO) Superlattices

  • Ryu, Sang-Woo;Jang, Hyun-M.
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.11 s.294
    • /
    • pp.734-737
    • /
    • 2006
  • A series of manganite-based superlattices composed of half-metallic $La_{2/3}Sr_{1/3}MnO_3/LaMnO_3$ and insulating LaMnO$_3$ stacking layers were fabricated by employing pulsed laser deposition method. The dc resistivity increased drastically by simply reducing the stacking periodicity. The resistivity enhancement was accompanied by a gradual decrease in the temperature (T$_c$) of the Metal-to-Insulator Transition (MIT). This observation was interpreted as a small decrease in the effective metallic fraction near the percolation threshold. For the stacking periodicity less than a certain critical value, there appeared another transition to an insulating state at temperatures far below T$_c$. This low-temperature transition seems to be closely related to the AF-type (C-type) orbital ordering in newly formed insulating domains.

Magnetic Properties of Multilayered and Mixed $Pr_{0.65}$Ca_{0.35}MnO_3/La_{0.7}Sr_{0.3}MnO_3$ Films

  • V. G. Prokhorov;Lee, Y. P.;V. S. Flis;Park, J. S.
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.S1
    • /
    • pp.67-69
    • /
    • 2003
  • The magnetic properties of single- and poly-crystalline $La_{0.7}Sr_{0.3}MnO_3/Pr_{0.65}Ca_{0.35}MnO_3$ multilayered (ML) films, and composite (CP) $(La_{0.7}Sr_{0.3})_{0.5}(Pr_{0.65}Ca_{0.35}_{0.5}MnO_3$ films, prepared by laser ablation, have been investigated in a wide temperature range. It was shown that the transformation from an incoherent to a coherent interface in the ML films leads to an enhancement of the ferromagnetic coupling between layers and to a single-phase magnetic transition. The amorphous CP films demonstrate a paramagnetic behavior of the magnetization with a sharp peak at $T_{G}\approx$45 K, which was interpreted as the formation of Griffiths phase. A short-term annealing at $750^{\circ}C$ induced the complete crystallization of film, and a recovery of the ferromagnetic and the metal-insulator transitions.

Study on high performance cathode on YSZ electrolyte for intermediate-temperature solid oxide fuel cells(IT-SOFC) (중온형 고체산화물 연료전지를 위한 YSZ 전해질에서의 고성능 공기극 연구)

  • Lee, Chang-Bo;Bae, Joong-Myeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.368-371
    • /
    • 2006
  • [ $La_{0.8}Sr_{0.2}Co_{1-x}Mn_xO_3$ ] cathode as a high performance cathode on YSZ electrolyte was studied by analyzing impedance spectra. It was shown that cathode property of $La_{0.8}Sr_{0.2}Co_{1-x}Mn_xO_3$ is bet ter than that of$La_{0.8}Sr_{0.2}CoO_3$. At $700^{\circ}C$ in air environment, $La_{0.8}Sr_{0.2}Co_{0.4}Mn_{0.6}O_3$ cathode on CGO- layered YSZ electrolyte showed very low area specific resistance of $0.14{\Omega}cm^2$, which is low enough for intermediate-temperature sol id oxide fuel cells. This is because material properties of ionic conductivity and thermal expansion compatibility with electrolyte were optimized. Judging from activation energy and oxygen part i al pressure dependance of cathode property, it was noted that oxygen surface exchange kinetics is dominantly influential on cathode property in higher temperature region than $700^{\circ}C$ and oxygen self-diffusion in cathode material is more influential in lower temperature region.

  • PDF