• Title/Summary/Keyword: $(CeO_2)_{0.9}(Gd_2O_3)_{0.1}$

Search Result 35, Processing Time 0.021 seconds

Characterization of (La,Sr))$MnO_3/Gd_{0.2}Ce_{0.8}O_{1.9}$ Interface with Citric Acid Contents and Sintering Temperature (시트르산의 양과 소결온도에 따른 (La,Sr)$MnO_3/Gd_{0.2}Ce_{0.8}O_{1.9}$ 계면특성)

  • 윤일영;윤희성;김병호
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.1
    • /
    • pp.18-25
    • /
    • 1998
  • G $d_{0.2}$C $e_{0.8}$ $O_{1.9}$(CGO) for electrolyte and L $a_{0.5}$S $r_{0.5}$Mn $O_3$(LSM50) for cathode in Solid Oxide Fuel Cells(SOFC) were synthesized by citrate process. Specimens were prepared with sintering temperatures at 110$0^{\circ}C$, 120$0^{\circ}C$ and 130$0^{\circ}C$, which were fabricated by slurry coating with citric acid contents. Interfacial resistance was measured between cathode and electrolyte using AC-impedance analyzer. With various citric acid content, the degree of agglomeration for the initial particles changed. Also sintering temperature changed the particle size and the degree of densification of cathode. Factors affecting the interfacial resistance were adherent degree of the electrolyte and cathode, distribution of TPB(three phase boundaries, TPB i.e., electrolyte/electrode/gas phase area) and porosity of cathode. By increasing the sintering temperature, particle size and densification of the cathode were increased. And then, TPB area which occurs catalytic reaction was reduced and so interfacial resistance was increased.sed.sed.d.

  • PDF

Synthesis of Garnet in the Ca-Ce-Gd-Zr-Fe-O System (Ca-Gd-Ce-Zr-Fe-O계에서의 석류석 합성 연구)

  • Chae Soo-Chun;Jang Young-Nam;Bae In-Kook;Yudintsev S.V.
    • Economic and Environmental Geology
    • /
    • v.38 no.2 s.171
    • /
    • pp.187-196
    • /
    • 2005
  • Structural sites which cations can occupy in garnet structure are centers of the tetrahedron, octahedron, and distorted cube sharing edges with the tetrahedron and octahedron. Among them, the size of cation occuping at tetrahedral site (the center of tetrahedron) is closely related with the size of a unit cell of garnet. Accordingly, garnet containing iron with relative large ionic radii in tetrahedral site can be considered as a promising matrix for the immobilization of the elements with large ionic radii, such as actinides in radioactive wastes. We synthesized several garnets with the batch composition of $Ca_{1.5}GdCe_{0.5}ZrFeFe_3O_{12}$, and studied their properties and phase relations under various conditions. Mixed samples were fabricated in a pellet form under a pressure of $200{\~}400{\cal}kg/{\cal}cm^2$ and were sintered in the temperature range of $1100\~1400^{\circ}C$ in air and under oxygen atmospheres. Phase identification and chemical analysis of synthesized samples were conducted by XRD and SEM/EDS. In results, garnet was obtained as the main phase at $1300^{\circ}C$, an optimum condition in this system, even though some minor phases like perovskite and unknown phase were included. The compositions of garnet and perovskite synthesized from the batch composition of $Ca_{1.5}GdCe_{0.5}ZrFeFe_3O_{12}$ were ranged $[Ca_{l.2-1.8}Gd_{0.9-1.4}Ce_{0.3-0.5}]^{VIII}[Zr_{0.8-1.3}Fe_{0.7-1.2}]^{VI}[Fe_{2.9-3.1}]^{IV}O_{12}$ and $Ca_{0.1-0.5}Gd_{0.0-0.8}Ce_{0.1-0.5}\;Zr_{0.0-0.2}Fe_{0.9-1.1}O_3$, respectively. Ca content was exceeded and Ce content was depleted in the 8-coordinated site, comparing to the initial batch composition. This phenomena was closely related to the content of Zr and Fe in the 6-coordinated site.

Fabrication Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF)/Ce0.9Gd0.1O2−δ (GDC) and La0.6Ba0.4Co0.2Fe0.8O3−δ (LBCF)/Ce0.9Gd0.1O2−δ (GDC) Composite Cathodes for Intermediate Temperature Solid Oxide Fuel Cells (중저온 SOFC용 Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF)/Ce0.9Gd0.1O2−δ (GDC) 및 La0.6Ba0.4Co0.2Fe0.8O3−δ (LBCF)/Ce0.9Gd0.1O2−δ (GDC) 복합체 양극 제조)

  • Lee, Seung-Hun;Yoon, Song-Seol;Cha, Young-Chul;Lee, Jun;Hwang, Hae-Jin;Moon, Ji-Woong
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.12
    • /
    • pp.740-746
    • /
    • 2007
  • The potential candidates for IT-SOFCs cathode materials, $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ (BSCF) and $La_{0.6}Ba_{0.4}Co_{0.2}Fe_{0.8}O_{3-{\delta}}$ (LBCF) powders, were synthesized by a EDTA-citrate combined method from $Sr(NO_3)_2$, $Ba(NO_3)_2$, $La(NO_3)_3{\cdot}6H_2O$, $Co(NO_3)_2{\cdot}6H_2O$, $Fe(NO_3)_3{\cdot}9H_2O$, citric acid and $EDTA-NH_3$. The cathode performance of symmetrical electrochemical cells consisting of BSCF-GDC or LBCF-GDC composite electrodes and a GDC electrolyte was investigated using by AC impedance spectroscopy at the temperature range of 500 to $700^{\circ}C$. It was found that a single phase perovskite could be successfully synthesized when the precursor is heated at $850^{\circ}C$ for 2 h. Due to thermal expansion mismatch between BSCF and GDC, the composite cathodes with lower GDC content than 45 wt% were peeled off from the GDC electrolyte and their electrode polarization resistance was estimated to be high. The thermal expansion coefficient of BSCF-GDC composites was decreased with increasing the GDC content and the electrode peeling off did not occur in BSCF-45 and 55 wt% GDC composites. BSCF-45 wt% GDC composite electrode showed the lowest area specific resistances (ASR) of 0.15 and $0.04{\Omega}{\cdot}cm^2$ at 600 and $700^{\circ}C$, respectively. On the other hand, LBCF-GDC composite cathodes showed higher ASR than the BSCF-45 and 55 wt% GDC and their cathode performance were decreased with the GDC content.

Preparation and Sintering Characteristics of Ce0.8Gd0.2O1.9 Powder by Ammonium Carbonate Co-precipitation (탄산암모늄 공침을 이용한 Ce0.8Gd0.2O1.9 분말의 합성 및 소결특성)

  • Yoo, Young-Chang;Chung, Byung-Joo;Sim, Soo-Man
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.1
    • /
    • pp.118-123
    • /
    • 2012
  • GDC20($Ce_{0.8}Gd_{0.2}O_{1.9}$) powder was synthesized from Ce and Gd nitrate solutions using ammonium carbonate($(NH_4)_2CO_3$) as a precipitant. Attrition-milling of the powder, which had been calcined at $700^{\circ}C$ for 4 h, decreased an average particle size of 2.2 ${\mu}m$ to 0.5 ${\mu}m$. The milled powder consisted of nano-sized spherical primary particles. Due to the excellent sinterability of the powder, sintering of the powder compacts for 4 h showed relative densities of 80% at 1000 $^{\circ}C$ and 96.5% at $1200^{\circ}C$, respectively. Densification was found to almost complete at $1300^{\circ}C$, resulting in a dense and homogeneous microstructure with a relative density of 99.5%. The grains of ~0.2 ${\mu}m$ in size at $1200^{\circ}C$ grew to ~1 ${\mu}m$ in size at $1300^{\circ}C$ as a result of a rapid grain growth.

Synthesis and Characterization of Gd1-xSrxMnO3 as Cathodic Material for Solid Oxide Fuel Cell (고체산화물 연료전지의 양극재료로서 Gd1-xSrxMnO3의 합성 및 특성평가)

  • 윤희성;최승우;김병호
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.2
    • /
    • pp.145-150
    • /
    • 1999
  • Gd1-xSrxMnO3(0$\leq$X$\leq$0.6) as the cathode for solid oxide fuel cell was synthesized by citrate process and studied for its crystal structure, electrical conductivity, thermal expansion coefficient (TEC), and investigated reactivity with 8 mol% yttria stabilized zirconia(8YSZ) or Ce0.8Gd0.2O1.9 (CGO). The crystal structure of Gd1-xSrxMnO3 changed from orthorhombic (0$\leq$X$\leq$0.3) through cubic (0.4$\leq$X$\leq$0.5) to tetragonal structure (X=0.6). When Sr contents was increased, the electrical conductivity of Gd1-xSrxMnO3 was inthose of La1-xSrxMnO3, 8YSZ and CGO if Sr content was above 30mol%. TEC of Gd1-xSrxMnO3 was increased with Sr content. After heat treatment at 1300$^{\circ}C$ for 48 hours, reaction product of Gd1-xSrxMnO3 and 8YSZ was SrZrO3. However CGO had no reaction product with Gd1-xSrxMnO3.

  • PDF

A Study on the Synthesis of Gd-doped $CeO_2$ and Sr-doped $LaMnO_3$ Powders and Phase Stability in Their Interface (Gd-doped $CeO_2$ 와 Sr-doped $LaMnO_3$ 분말의 합성 및 그 계면에서의 상 안정성 연구)

  • 정승훈;김남진;이덕열
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.6
    • /
    • pp.652-658
    • /
    • 1997
  • The phase stability in the interface of Sr-doped LaMnO3(LSM)/Gd-doped CeO2(CGO) was examined in this study in order to check the feasibility of using LSM as the cathode material in a low-temperature SOFC(solid oxide fuel cell) using CGO as the electrolyte. For the purpose, CGO powders of Ce0.82Gd0.18O0.91 and two LSM powders having different compositions, La0.9Sr0.1MnO3(LSM10) and La0.5Sr0.5MnO3(LSM50), were synthesized using Pechini method. Then, specimens having the LSM/CGO interface were prepared, heat-treated at 130$0^{\circ}C$ for up to 3 days, and analyzed by XRD and STEM/EDX. Face-centered cubic CGO powders of less than 10 nm size were obtained by calcination of polymeric precursor formed in the process at 45$0^{\circ}C$. Higher calcination temperature of $700^{\circ}C$ was necessary for monoclinic LSM10 and cubic LSM50 powders. LSM powders were coarser than CGO and observed to be in the range of 50~100 nm. No trace of LSM-CGO interaction product was found in the XRD pattern. Also it was known from the concentration profile in the vicinity of the interface that interdiffusion was occurred over only a small penetration depth of ~100 nm order.

  • PDF

Electrochemical performance of double perovskite structured cathodes for intermediate temperature SOFCs

  • Jo, Seung-Hwan;Muralidharan, P.;Kim, Do-Kyung
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.56.1-56.1
    • /
    • 2009
  • The intermediate operating temperature of solid oxide fuel cells (IT-SOFCs) have achieved considerable importance in the area of power fabrication. This is because to improve materials compatibility, their long-term stability and cost saving potential. However, to conserve rational cell performance at reduced-temperature regime, cathode performance should be obtained without negotiating the internal resistance and the electrode kinetics of the cell. Recently, double perovskite structure cathodes have been studied with great attention as a potential material for IT-SOFCs. In this study, double-perovskite structured cathodes of $GdBaCoCuO_{5+\delta}$, $GdBaCo_{2/3}Cu_{2/3}Fe_{2/3}O_{5+\delta}$ compositions and $(1-x)GdBaCo_2O_{5+\delta}+xCe_{0.9}Gd_{0.1}O_{1.95}$ (x = 10, 20, 30 and 40 wt.%) composites were evaluated as the cathode for intermediate temperature solid oxide fuel cells(IT-SOFCs). Electrical conductivity of the cathodes were measured by DC 4-probe method, and the thermal expansion coefficient of each sample was measured up to $900^{\circ}C$ by a dilatometer study. Area specific resistances(ASR) of the $GdBaCo_{2/3}Cu_{2/3}Fe_{2/3}O_{5+\delta}$ cathode and 70 wt.% $GdBaCo_2O5+\delta$ + 30wt.% Ce0.9Gd0.1O1.95 composite cathode on CGO electrolyte substrate were analyzed using AC 3-probe impedance study. The obtained results demonstrate that double perovskite-based compositions are promising cathode materials for IT-SOFCs.

  • PDF

Preparation of Proton-Conducting Gd-Doped Barium Cerate by Oxalate Coprecipitation Method

  • Yong Sung Choi;Soo Man Sim
    • The Korean Journal of Ceramics
    • /
    • v.4 no.3
    • /
    • pp.213-221
    • /
    • 1998
  • $BaCe_{0.9}Gd_{0.1_O_{2.95}$ powder was synthesized by oxalate coprecipitation method. Precipitate with a stoichimetric ratio of the cations was prepared by adding a mixture of Ba, Ce and Gd nitrate solution to an oxalic acid solution at pH 4. Reaction between the constituent oxides to form a perovskite phase was initiated at $800^{\circ}C$ and a single phase $BaCe_{0.9}Gd_{0.1_O_{2.95}$ powder having good sinterability was obtained after calcination at $1000^{\circ}C$. Sintering green compacts of this powder for 6 h showed a considerable densification to start at $1100^{\circ}C$ and resulted in 93% and 97% relative densities at $1300^{\circ}$ and at $1450^{\circ}C$, respectively. Whereas the power compacts prepared by solid state reaction had lower relative densities, 78% at $1300^{\circ}$and 90% at $1450^{\circ}C$. Fine particles of $CeO_2$ second phase were observed in the surface of the sintered compacts. This was attributed to the evaporation of BaO from the surface that had been exposed during thermal etching.

  • PDF

Influence of Gd0.1Ce0.9O2-δ Interlayer between La0.6Sr0.4Co0.2Fe0.8O3-δ Cathode and Sc-doped Zirconia Electrolyte on the Electrochemical Performance of Solid Oxide Fuel Cells (La0.6Sr0.4Co0.2Fe0.8O3-δ 공기극과 Sc이 도핑된 지르코니아 전해질 사이에 삽입한 Gd0.1Ce0.9O2-δ 중간층이 고체산화물 연료전지의 전기화학적 성능에 미치는 영향)

  • Lim, Jinhyuk;Jung, Hwa Young;Jung, Hun-Gi;Ji, Ho-Il;Lee, Jong-Ho
    • Ceramist
    • /
    • v.21 no.4
    • /
    • pp.378-387
    • /
    • 2018
  • The optimal fabrication conditions for $Gd_{0.1}Ce_{0.9}O_{2-{\delta}}$(GDC) buffer layer and $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-{\delta}}$ (LSCF) cathode on 1mol% $CeO_2-10mol%\;Sc_2O_3$ stabilized $ZrO_2$ (CeScSZ) electrolyte were investigated for application of IT-SOFCs. GDC buffer layer was used in order to prevent undesired chemical reactions between LSCF and CeScSZ. These experiments were carried out with $5{\times}5cm^2$ anode supported unit cells to investigate the tendencies of electrochemical performance, Microstructure development and interface reaction between LSCF/GDC/CeScSZ along with the variations of GDC buffer layer thickness, sintering temperatures of GDC and LSCF were checked, respectively. Electrochemical performance was analyzed by DC current-voltage measurement and AC impedance spectroscopy. Microstructure and interface reaction were investigated by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Although the interfacial reaction between these materials could not be perfectly inhibited, We found that the cell, in which $6{\mu}m$ GDC interlayer sintered at $1200^{\circ}C$ and LSCF sintered at $1000^{\circ}C$ were applied, showed good interfacial adhesions and effective suppression of Sr, thereby resulting in fairly good performance with power density of $0.71W/cm^2$ at $800^{\circ}C$ and 0.7V.

An SOFC Cathode Composed of LaNi0.6Fe0.4O3 and Ce(Ln)O2 (Ln=Sm, Gd, Pr)

  • Chiba, Reiichi;Komatsu, Takeshi;Orui, Himeko;Taguchi, Hiroaki;Nazawa, Kazuhiko;Arai, Hajime
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.12
    • /
    • pp.766-771
    • /
    • 2008
  • We fabricated single cells with a cathode consisting of a $LaNi_{0.6}Fe_{0.4}O_3-Ce_{0.8}Sm_{0.2}O_{1.9}$ composite (LNF-S20DC composite) active layer and an LNF current collecting layer on a ${0.89ZrO_2}-{0.10Sc_2}{O_3}-0.01{Al_2}{O_3}$ electrolyte sheet. The cathode layers were prepared by the screen-printing method. The cathode properties of these cells were measured by the AC impedance method at $800^{\circ}C$. The cathodes with the ceria-LNF composite active layer exhibited high power performance prior to current loading. We investigated the influence of the mixture ratio of LNF and S20DC on the cathodes properties. The Sm in the ceria particles of the composite cathode was substituted with other rare-earth elements. Cathodes with Pr and Gd co-doped ceria in the active layer provided the better performance than those with Sm- or Gd-doped ceria.