• Title/Summary/Keyword: $({\alpha}-phase$

Search Result 1,601, Processing Time 0.033 seconds

Solid Solution Phenomena of Al+Al3Ti Alloy and Al+10wt.%Ti Alloy using Mechanical Alloying Process (기계적 합금화법에 의해 제조된 Al+Al3Ti합금 및 Al+10wt.%Ti합금의 고용현상)

  • Kim, Hye-Sung;Lee, Jung-Ill;Kim, Gyeung-Ho;Kum, Dong-Wha;Shur, Dong-Soo
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.9 no.2
    • /
    • pp.121-129
    • /
    • 1996
  • The solubility of Ti in Al matrix was determined by X-ray diffraction method on two different mechanical alloying systems, i.e Al+$Al_3Ti$ and Al+Ti alloys. Starting powder compositions of two systems were chosen for final volume fraction of $Al_3Ti$ phase being 25%. The solubility of Ti in ${\alpha}$-Al was estimated by the lattice parameter measurement of Al. For Al+$Al_3Ti$ mixture, it appeared that some of $Al_3Ti$ particles decomposed during milling and maximum solubility of Ti in Al was about 0.99%. The majority of $Al_3Ti$ particles were dispersed uniformly in Al matrix, having approximate size of 100~200 nm. On the other hand, higher Ti solubility of 1.24 wt.% was found in Al+Ti system, with starting composition of Al+10 wt.%Ti. After 15 hours of milling, Ti phase was identified as 20 nm sized particles embedded in Al matrix. The annealing of mechanically alloyed powders from Al+$Al_3Ti$ and Al+10 wt.%Ti systems was followed in the temperature range of 200 to $600^{\circ}C$ to study thermal stability of supersaturated solution of Al(Ti). After annealing, the lattice parameter of Al reverted back to that of pure Al, and the peak intensity ratio of $Al_3Ti$/Al was increased more than the original value before annealing. These results suggest that Ti dissolve into alpha-Al solutions during milling, and by annealing, $Do_{22}-Al_3Ti$ phase forms from Al(Ti) solution.

  • PDF

Change in Corrosion Resistance of Solution-Treated AZ91-X%Sn Magnesium Alloys (용체화처리한 AZ91-X%Sn 마그네슘 합금의 부식 저항성 변화)

  • Moon, Jung-Hyun;Jun, Joong-Hwan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.28 no.5
    • /
    • pp.229-238
    • /
    • 2015
  • The effects of Sn addition and solution treatment on corrosion behavior were studied in AZ91 magnesium casting alloy. The addition of 5%Sn contributed to the introduction of $Mg_2Sn$ phase, to the reduction in dendritic cell size and to the increase in the amount of secondary phases. After the solution treatment, trace amount of $Al_8Mn_5$ particles were observed in the ${\alpha}$-(Mg) matrix for the AZ91 alloy, while $Mg_2Sn$ phase with high thermal stability was additionally found in the AZ91-5%Sn alloy. Before the solution treatment, the AZ91-5%Sn alloy had better corrosion resistance than the Sn-free alloy, which is caused by the enhanced barrier effect of the (${\beta}+Mg_2Sn$) phases formed more continuously along the dendritic cell boundaries. It is interesting to note that after the solution treatment, the corrosion rate of both alloys became increased, but the Sn-added alloy showed higher corrosion rate than the Sn-free alloy. The microstructural examination on the corroded surfaces revealed that the remaining $Mg_2Sn$ particles in the solution-treated AZ91-5%Sn alloy play a role in accelerating corrosion by galvanic coupling with the ${\alpha}$-(Mg) matrix.

Effect of In Situ YAG on Properties of the Pressureless-Sintered SiC-$ZrB_2$ Electroconductive (상압소결(常壓燒結)한 SiC-$ZrB_2$ 도전성(導電性) 복합체(複合體)의 특성(特性)에 미치는 In Situ YAG의 영향(影響))

  • Shin, Yong-Deok;Ju, Jin-Young;Ko, Tae-Hun;Lee, Jung-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1230-1231
    • /
    • 2008
  • The effect of content of $Al_2O_3+Y_2O_3$ sintering additives on the densification behavior, mechanical and electrical properties of the pressureless-sintered $SiC-ZrB_2$ electroconductive ceramic composites was investigated. The $SiC-ZrB_2$ electroconductive ceramic composites were pressureless-sintered for 2 hours at 1,700[$^{\circ}C$] temperatures with an addition of $Al_2O_3+Y_2O_3$(6:4 mixture of $Al_2O_3$ and $Y_2O_3$) as a sintering aid in the range of 8${\sim}$20[wt%]. Phase analysis of $SiC-ZrB_2$ composites by XRD revealed mostly of ${\alpha}$-SiC(6H), $ZrB_2$ and In Situ YAG($Al_5Y_3O_{12}$). The relative density, flexural strength, Young's modulus and vicker's hardness showed the highest value of 89.01[%], 81.58[Mpa], 31.437[GPa] and 1.34[GPa] for $SiC-ZrB_2$ composites added with 16[wt%] $Al_2O_3+Y_2O_3$ additives at room temperature respectively. Abnormal grain growth takes place during phase transformation from ${\beta}$-SiC into ${\alpha}$-SiC was correlated with In Situ YAG phase by reaction between $Al_2O_3$ and $Y_2O_3$ additive during sintering. Compositional design and optimization of processing parameters are key factors for controlling and improving the properties of SiC-based electroconductive ceramic composites. In this paper, it is convinced that ${\beta}$-SiC based electroconductive ceramic composites for heaters or ignitors can be manufactured by pressureless sintering.

  • PDF

Microstructure and High Temperature Oxidation Behaviors of Fe-Ni Alloys by Spark Plasma Sintering (방전플라즈마 소결법에 의해 제조된 Fe-Ni 합금의 미세조직 및 고온산화특성)

  • Lim, Chae Hong;Park, Jong Seok;Yang, Sangsun;Yun, Jung-Yeul;Lee, Jin Kyu
    • Journal of Powder Materials
    • /
    • v.24 no.1
    • /
    • pp.53-57
    • /
    • 2017
  • In this study, we report the microstructure and the high-temperature oxidation behavior of Fe-Ni alloys by spark plasma sintering. Structural characterization is performed by scanning electron microscopy and X-ray diffraction. The oxidation behavior of Fe-Ni alloys is studied by means of a high-temperature oxidation test at $1000^{\circ}C$ in air. The effect of Ni content of Fe-Ni alloys on the microstructure and on the oxidation characteristics is investigated in detail. In the case of Fe-2Ni and Fe-5Ni alloys, the microstructure is a ferrite (${\alpha}$) phase with body centered cubic (BCC) structure, and the microstructure of Fe-10Ni and Fe-20Ni alloys is considered to be a massive martensite (${\alpha}^{\prime}$) phase with the same BCC structure as that of the ferrite phase. As the Ni content increases, the micro-Vickers hardness of the alloys also increases. It can also be seen that the oxidation resistance is improved by decreasing the thickness of the oxide film.

Microstructure and Tensile Strength Property of Arc Brazed DP steel using Cu-Sn Insert Metal (Cu-Sn 삽입금속을 이용한 DP강의 아크 브레이징 접합부의 미세조직과 인장특성)

  • Cho, Wook-Je;Cho, Young-Ho;Yun, Jung-Gil;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.31 no.1
    • /
    • pp.58-64
    • /
    • 2013
  • The following results were obtained, microstructures and tensile properties in arc brazed joints of DP(dual phase) steel using Cu-5.3wt%Sn insert metal was investigated as function of brazing current. 1) The Fusion Zone was composed of ${\alpha}Fe+{\gamma}Cu$ and Cu23Sn2. The reason for the formation of these solid solutions. Despite, Fe & Cu were impossible to solid solution at room temperature. It's melting & reaction to something of insert metal & Base Metal (DP Steel) by Arc. Brazing Process has faster cooling rate then Cast Process, Supersaturated solid solution at room temperature. 2) The increase Hardness of Fusion Zone was directly proportional to the rise of welding current. Because, ${\alpha}Fe+{\gamma}Cu$ phase (higher hardness than the Cu23Sn2.(104.1Hv < 271.9Hv)) Volume fraction was Growth, due to increasing the amount of base metal melting by High current. 3) The results of tensile shear test by Brazing, All specimens happen to fracture in Fusion Zone. On the other hand, when Brazing Current increasing tend to rise tensile load. but it was very small, about 26-30% of the base metal. 4) The result of fracture analysis, The crack initiate at Triple Point for meet to Upper B.M/Under B.M/Fusion Zone. This Crack propagated to Fusion zone. So ruptured by tensile strength. The Reason to in the fusion zone fracture, Fusion zone by Brazing of hardness (strength) was very lower then the base metal (DP steel). In addition the Fusion Zone's thickness in triple point was thin than the base metal's thickness in triple point.

A Study on the Aging Behavior of a Mg-8.5Li-4.5Al alloy by Differential Scanning Calorimetry (열분석법에 의한 Mg-8.5Li-4.5Al합금의 시효거동 연구)

  • Kim, Y.W.;Hwang, Y.H.;Park, T.W.;Kim, D.H.;Hong, C.P.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.10 no.4
    • /
    • pp.255-265
    • /
    • 1997
  • Precipitation and strengthening mechanisms in squeeze cast Mg-8.5wt%Li-4.5wt%Al have been investigated by differential scanning calorimetry(DSC), scanning electron microscopy(SEM), in-situ and ex-situ X-ray diffraction analysis and hardness measurement. Special emphasis was placed on the investigation of the precipitation behavior by the DSC technique. Microstructural and calorimetric analysis showed that ${\theta}$ and ${\delta}$ precipitates in the b.c.c. ${\beta}$ phase matrix, forming two exothermic peaks at the temperature ranges of $130^{\circ}C{\sim}180^{\circ}C$ and $236^{\circ}C{\sim}280^{\circ}C$. ${\theta}$ and ${\delta}$ dissolve into the matrix forming an endothermic peak at the temperature range of $280^{\circ}C{\sim}352^{\circ}C$. The as-cast microstructure consists of ${\alpha}$, ${\beta}$ and ${\delta}$. Peak strength was obtained after aging for 1 hour at $50^{\circ}C$. The aging time required for the peak strength decreased as the aging temperature increases. The hardness decrease during overaging was due to the coarsening of ${\theta}$ precipitates. Microhardness measurement showed that variation of the hardness of ${\beta}$ matrix was more pronounced than that of the ${\alpha}$ phase, indicating that the ${\beta}$ phase is more responsible for the strengthening of the Mg-8.5wt%Li-4.5wt%Al alloy.

  • PDF

Synthesis of Aniline from Nitrobenzene and Fe(CO)5 with PEG/γ-Al2O3 as Phase Transfer Catalyst (PEG/γ-Al2O3 상이동 촉매상에서 니트로벤젠과 Fe(CO)5로부터의 아닐린 합성)

  • Oh, So-Young;Lee, Hwa-Su;Park, Dae-Won;Park, Sang-Wook;Shin, Jung-Ho
    • Applied Chemistry for Engineering
    • /
    • v.4 no.1
    • /
    • pp.144-152
    • /
    • 1993
  • Immobilized polyethylene glycols onto metal oxides such as ${\gamma}-Al_2O_3$, ${\alpha}-Al_2O_3$, $SiO_2$ and $TiO_2$ were used as phase transfer catalysts for the room temperature synthesis of aniline from nitrobenzene and ironpentacarbonyl. The amount of attached PEG molecules increased with specific surface area of metal oxides. Among the immobilized catalysts tested PEG/${\gamma}-Al_2O_3$ showed the highest activity. The reaction rate increased with the chain length of PEG mole-cules and the aqueous NaOH concentration. Mechanistic study carried out using infrared spectrometer revealed that the role of PEG was to increase the formation of $HFe(CO)_4{^-}$ ion, which is known as active species, and its movement from aqueous to organic phase.

  • PDF

Effect of Ag on microstructural behaviour of Nanocrystalline $Fe_{87-x}Zr_7B_6Ag_x$($0{\leq}x_{Ag}{\leq}4$) Magnetic Thin Films Materials

  • Lee, W.J.;Min, B.K.;Song, J.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.3-6
    • /
    • 2002
  • Effect of Ag additive element on microstructure of $Fe_{87-x}Zr_7B_6Ag_x$, magnetic thin films on Si(001) substrates has been investigated using Transmission Electron Microscopy(TEM) and X-ray Diffraction(XRD). All samples with additive Ag element were made by DC-sputtering and subjected to annealing treatments of $300^{\circ}C{\siim}600^{\circ}C$ for 1 hr. TEM and XRD showed that perfectly amorphous state in Ag-free Fe-based films was observed in as-deposited condition. The as-deposited Fe-based films with the presence of Ag constituent have a mixture of Fe-based amorphous and nano-sized Ag crystalline phases. In this case, additive element, Ag was soluted into Fe-based matrix. With the increase in additive element, Ag, insoluble nano-crystalline Ag particles were dispersed in the Fe-based amorphous matrix. Crystallization of Fe-based amorphous phase in the matrix of $Fe_{82}Zr_7B_6Ag_5$ thin films occurred at an annealing temperature of $400^{\circ}C$. Upon annealing, the amorphous-Ag crystalline state of Fe-Zr-B-Ag films was transformed into the mixture of Ag crystalline phase + Fe-based amorphous phase + ${\alpha}$-Fe cluster followed by the crystallization process of ${\alpha}$-Fe nanocrystalline + Ag crystalline phases.

  • PDF

Berberine Prevents Intestinal Mucosal Barrier Damage During Early Phase of Sepsis in Rat through the Toll-Like Receptors Signaling Pathway

  • Li, Guo-Xun;Wang, Xi-Mo;Jiang, Tao;Gong, Jian-Feng;Niu, Ling-Ying;Li, Ning
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.1
    • /
    • pp.1-7
    • /
    • 2015
  • Our previous study has shown berberine prevents damage to the intestinal mucosal barrier during early phase of sepsis in rat through mechanisms independent of the NOD-like receptors signaling pathway. In this study, we explored the regulatory effects of berberine on Toll-like receptors during the intestinal mucosal damaging process in rats. Male Sprague-Dawlay (SD) rats were treated with berberine for 5 d before undergoing cecal ligation and puncture (CLP) to induce polymicrobial sepsis. The expression of Toll-like receptor 2 (TLR 2), TLR 4, TLR 9, the activity of nuclear factor-kappa B ($NF-{\kappa}B$), the levels of selected cytokines and chemokines, percentage of cell death in intestinal epithelial cells, and mucosal permeability were investigated at 0, 2, 6, 12 and 24 h after CLP. Results showed that the tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) and interleukin-6 (IL-6) level were significantly lower in berberine-treated rats compared to the control animals. Conversely, the expression level of tight junction proteins, percentage of cell death in intestinal epithelial cells and the mucosal permeability were significantly higher in berberine-treated rats. The mRNA expression of TLR 2, TLR 4, and TLR 9 were significantly affected by berberine treatment. Our results indicate that pretreatment with berberine attenuates tissue injury and protects the intestinal mucosal barrier in early phase of sepsis and this may possibly have been mediated through the TLRs pathway.

Processing and Properties of Mechanically Alloyed Iron-Silicide (기계적 합금화에 의한 Iron-Silicide의 제조 및 특성)

  • Ur, Soon-Chul;Kim, Il-Ho
    • Korean Journal of Materials Research
    • /
    • v.11 no.2
    • /
    • pp.132-136
    • /
    • 2001
  • Iron- silicide has been produced by mechanical alloying process and consolidated by hot pressing. As-consolidated iron silicides were consisted of $\beta$-FeSi$_2$ phase, and untransformed mixture of $\alpha$-$Fe_2Si_5$ and $\varepsilon$-FeSi phases. Isothermal annealing has been carried out to induce the transformation to a thermoelectric semiconducting $\beta$-$FeSi_2$ phase. The condition for $\beta$-FeSi$_2$ transformation was investigated by utilizing DTA, SEM, TEM and XRD analysis. The phase transformation was shown to be taken place by a vacuum isothermal annealing at $830^{\circ}C$ for 24 hours. The mechanical and thermoelectric properties of $\beta$-FeSi$_2$ materials before and after isothermal annealing were characterized in this study.

  • PDF