DOI QR코드

DOI QR Code

Microstructure and High Temperature Oxidation Behaviors of Fe-Ni Alloys by Spark Plasma Sintering

방전플라즈마 소결법에 의해 제조된 Fe-Ni 합금의 미세조직 및 고온산화특성

  • Lim, Chae Hong (Division of Advanced Materials Engineering, Kongju National University) ;
  • Park, Jong Seok (Division of Advanced Materials Engineering, Kongju National University) ;
  • Yang, Sangsun (Powder Technology Department, Korea Institute of Materials Science) ;
  • Yun, Jung-Yeul (Powder Technology Department, Korea Institute of Materials Science) ;
  • Lee, Jin Kyu (Division of Advanced Materials Engineering, Kongju National University)
  • 임채홍 (공주대학교 신소재공학부) ;
  • 박종석 (공주대학교 신소재공학부) ;
  • 양상선 (한국기계연구원 부설 재료연구소 분말기술연구실) ;
  • 윤중열 (한국기계연구원 부설 재료연구소 분말기술연구실) ;
  • 이진규 (공주대학교 신소재공학부)
  • Received : 2017.02.08
  • Accepted : 2017.02.20
  • Published : 2017.02.28

Abstract

In this study, we report the microstructure and the high-temperature oxidation behavior of Fe-Ni alloys by spark plasma sintering. Structural characterization is performed by scanning electron microscopy and X-ray diffraction. The oxidation behavior of Fe-Ni alloys is studied by means of a high-temperature oxidation test at $1000^{\circ}C$ in air. The effect of Ni content of Fe-Ni alloys on the microstructure and on the oxidation characteristics is investigated in detail. In the case of Fe-2Ni and Fe-5Ni alloys, the microstructure is a ferrite (${\alpha}$) phase with body centered cubic (BCC) structure, and the microstructure of Fe-10Ni and Fe-20Ni alloys is considered to be a massive martensite (${\alpha}^{\prime}$) phase with the same BCC structure as that of the ferrite phase. As the Ni content increases, the micro-Vickers hardness of the alloys also increases. It can also be seen that the oxidation resistance is improved by decreasing the thickness of the oxide film.

Keywords

References

  1. G. L. Wulf, T. J. Carter and G. R. Wallwork: Corros. Sci., 9 (1969) 689. https://doi.org/10.1016/S0010-938X(69)80100-9
  2. A. D. Romig, Jr. and J. I. Goldstein: Metall. Trans. A, 11 (1980) 1151. https://doi.org/10.1007/BF02668139
  3. A. D. Romig, Jr. and J. I. Goldstein: Metall. Trans. A, 12 (1981) 243. https://doi.org/10.1007/BF02655197
  4. A. Zambon, B. Bandon, A. F. Norman and A. L. Greer, E. Ramous: Mater. Sci. Eng. A, 226 (1997) 119.
  5. K. Eckler, F. Gartner, H. Assadi, A. F. Norman, A. L. Greer and D. M. Herlach: Mater. Sci. Eng. A, 226 (1997) 410.
  6. A. Zambon, B. Badan, K. Eckler, F. Gartner, A. F. Norman, A. L. Greer, D. M. Herlach and E. Ramous: Acta. Mater., 46 (1998) 4657. https://doi.org/10.1016/S1359-6454(98)00141-4
  7. K. Rajanna and M. M. Naya: Mater. Sci. Eng. B, 77 (2000) 288. https://doi.org/10.1016/S0921-5107(00)00503-1
  8. M. Kouncheva, G. Raichevski, St. Vitkova and M. Prazak: Surf. Coat. Tech., 31 (1987) 137. https://doi.org/10.1016/0257-8972(87)90066-1
  9. K. H. Kim, H. C. Yoon, C. J. Choi and B. T. Lee: J. Korean Powder Metall. Inst., 11 (2004) 472. https://doi.org/10.4150/KPMI.2004.11.6.472
  10. I. Todd and A. T. Sidambe: Advances in Powder Metallurgy, I. Chang and Y. Zhao (Ed.), Woodhead Publishing, Oxford (2013) 109.
  11. H. Ye, X. Y. Liu and H. Hong: Mater. Lett., 62 (2008) 3334. https://doi.org/10.1016/j.matlet.2008.03.027
  12. M. Rafi Raza, F. Ahmad, M. A. Omar and R. G. German: J. Mater. Process. Tech., 212 (2012) 164. https://doi.org/10.1016/j.jmatprotec.2011.08.019
  13. A. Azizi and S. K. Sadrnezhaad: J. Alloy. Compd., 485 (2009) 484. https://doi.org/10.1016/j.jallcom.2009.05.147
  14. K. S. Son, J. H. Yoon, J. H. Kim, H. S. Kim, T. Narita and S. Hayashi: Korean J. Met. Mater., 40 (2002) 1083.
  15. J. S. Oh, Y. M. Kong, B. K. Kim and K. A. Lee: J. Korean Powder Metall. Inst., 21 (2014) 55. https://doi.org/10.4150/KPMI.2014.21.1.55
  16. D. B. Lee and T. D. Nguyen : Korean J. Met. Mater., 47 (2009) 235.
  17. G. C. Wood: Corros. Sci., 2 (1965) 173.