• 제목/요약/키워드: $({\alpha}-phase$

검색결과 1,601건 처리시간 0.023초

Glycogen Metabolism in Vibrio vulnificus Affected by malP and malQ

  • Han, Ah-Reum;Lee, Yeon-Ju;Wang, Tianshi;Kim, Jung-Wan
    • 한국미생물·생명공학회지
    • /
    • 제46권1호
    • /
    • pp.29-39
    • /
    • 2018
  • Vibrio vulnificus needs various responsive mechanisms to survive and transmit successfully in alternative niches of human and marine environments, and to ensure the acquisition of steady energy supply to facilitate such unique life style. The bacterium had genetic constitution very different from that of Escherichia coli regarding metabolism of glycogen, a major energy reserve. V. vulnificus accumulated more glycogen than other bacteria and at various levels according to culture medium and carbon source supplied in excess. Glycogen was accumulated to the highest level in Luria-Bertani (3.08 mg/mg protein) and heart infusion (4.30 mg/mg protein) complex media supplemented with 1% (w/v) maltodextrin at 3 h into the stationary phase. Regarding effect of carbon source, more glycogen was accumulated when maltodextrin (2.34 mg/mg protein) was added than when glucose or maltose (0.78.1-14 mg/mg protein) was added as an excessive carbon source to M9 minimal medium, suggesting that maltodextrin metabolism might affect glycogen metabolism very closely. These results were supported by the analysis using the malP (encoding a maltodextrin phosphorylase) and malQ (encoding a 4-${\alpha}$-glucanotransferase) mutants, which accumulated much less glycogen than wild type when either glucose or maltodextrin was supplied as an excessive carbon source, but at different levels (3.1-80.3% of wild type glycogen). Therefore, multiple pathways for glycogen metabolism were likely to function in V. vulnificus and that responding to maltodextrin might be more efficient in synthesizing glycogen. All of the glycogen samples from 3 V. vulnificus strains under various conditions showed a narrow side chain length distribution with short chains (G4-G6) as major ones. Not only the comparatively large accumulation volume but also the structure of glycogen in V. vulnificus, compared to other bacteria, may explain durability of the bacterium in external environment.

저온 분사 공정으로 제조된 티타늄 코팅층의 치밀화에 미치는 열처리 분위기의 영향 (Effect of Heat Treatment Environment on the Densification of Cold Sprayed Ti Coating Layer)

  • 유지상;김형준;오익현;이기안
    • 한국분말재료학회지
    • /
    • 제19권2호
    • /
    • pp.110-116
    • /
    • 2012
  • This study investigated the effects of annealing environment for the densification and purification properties of pure titanium coating layer manufactured by cold spraying. The annealing was conducted at $600^{\circ}C$/1 h and three kinds of environments of vacuum, Ar gas, and $5%H_2+Ar$ mixture gas were controlled. Cold sprayed Ti coating layer (as sprayed) represented 6.7% of porosity and 228 HV of hardness, showing elongated particle shapes (severe plastic deformation) perpendicular to injection direction. Regardless of gas environments, all thermally heat treated coating layers consisted of pure ${\alpha}$-Ti and minimal oxide. Vacuum environment during heat treatment represented superior densification properties (3.8% porosity, 156.7 HV) to those of Ar gas (5.3%, 144.5 HV) and $5%H_2+Ar$ mixture gas (5.5%, 153.1 HV). From the results of phase analysis (XRD, EPMA, SEM, EDS), it was found that the vacuum environment during heat treatment could be effective for reducing oxide contents (purification) in the Ti coating layer. The characteristic of microstructural evolution with heat treatment was found to be different at three different gas environments. The controlling method for improving densification and purification in the cold sprayed Ti coating material was also discussed.

Effect of Se Flux and Se Treatment on the Photovoltaic Performance of β-CIGS Solar Cells

  • Kim, Ji Hye;Cha, Eun Seok;Park, Byong Guk;Ahn, Byung Tae
    • Current Photovoltaic Research
    • /
    • 제3권2호
    • /
    • pp.39-44
    • /
    • 2015
  • $Cu(In,Ga)_3Se_5$ (${\beta}-CIGS$) has a band gap of 1.35 eV which is an optimum value for high solar-energy conversion efficiency. However, ${\beta}-CIGS$ film was not well characterized yet due to lower efficiency compared to $Cu(In,Ga)Se_2$ (${\alpha}-CIGS$). In this work, ${\beta}-CIGS$ films were fabricated by a three-stage co-evaporation of elemental sources with various Se fluxes. As the Se flux increased, the crystallinity of ${\beta}-CIGS$ phase was improved from the analysis of Raman spectroscopy and a deep-level defect was reduced from the analysis of photoluminescence spectroscopy. A Se treatment of the ${\beta}-CIGS$ film at $200^{\circ}C$ increased Ga content and decreased Cu content at the surface of the film. With the Se treatment at $200^{\circ}C$, the cell efficiency was greatly improved for the CIGS films prepared with low Se flux due to the increase of short-circuit current and fill factor. It was found that the main reason of performance improvement was lower Cu content at the surface instead of higher Ga content.

Overexpression of Thermoalkalophilic Lipase from Bacillus stearothermophilus L1 in Saccharomyces cerevisiae

  • Ahn, Jung-Oh;Jang, Hyung-Wook;Lee, Hong-Weon;Choi, Eui-Sung;Haam, Seung-Joo;Oh, Tae-Kwang;Jung, Joon-Ki
    • Journal of Microbiology and Biotechnology
    • /
    • 제13권3호
    • /
    • pp.451-456
    • /
    • 2003
  • An expression vector system was developed for the secretory production of recombinant Bacillus stearothermophilus L1 lipase in Saccharomyces cerevisiae. The mature L1 lipase gene was fused to ${\alpha}-amylase$ signal sequence from Aspergillus oryzae for the effective secretion into the culture broth and the expression was controlled under GAL10 (the gene coding UDP-galactose epimerase of S. cerevisiae) promoter. S. cerevisiae harboring the resulting plasmid successfully secreted L1 lipase into the culture broth. To examine an optimum condition for L1 lipase expression in the fed-batch culture, L1 lipase expression was induced at three different growth phases (early, mid, and late-exponential growth phases). Maximum product on of L1 lipase (1,254,000 U/l, corresponding to 0.65/1) was found when the culture was induced at an early growth phase. Secreted recombinant L1 lipase was purified only through CM-Sepharose chromatography, and the purified enzyme showed 1,963 U/mg of specific activity and thermoalkalophilic properties similar to those reported for the enzyme expressed in Escherichia coli.

Kinetic spray 공정을 이용한 Cu repair 코팅 소재 제조 및 열처리에 따른 미세조직과 물성 변화 (Manufacturing of Cu Repair Coating Material Using the Kinetic Spray Process and Changes in the Microstructures and Properties by Heat Treatment)

  • 전민광;김형준;이기안
    • 한국분말재료학회지
    • /
    • 제21권5호
    • /
    • pp.349-354
    • /
    • 2014
  • This study is a basic research for repair material production which manufactured a Cu repair coating layer on the base material of a Cu plate using kinetic spray process. Furthermore, the manufactured material underwent an annealing heat treatment, and the changes of microstructure and macroscopic properties in the Cu repair coating layer and base material were examined. The powder feedstocks were sphere-shaped pure Cu powders with an average size of $27.7{\mu}m$. The produced repair coating material featured $600{\mu}m$ thickness and 0.8% porosity, and it had an identical ${\alpha}$-Cu single phase as the early powder. The produced Cu repair coating material and base material displayed extremely high adhesion characteristics that produced a boundary difficult to identify. Composition analysis confirmed that the impurities in the base material and repair coating material had no significant differences. Microstructure observation after a $500^{\circ}C/1hr$. heat treatment (vacuum condition) identified recovery, recrystallization and grain growth in the repair coating material and featured a more homogeneous microstructure. The hardness difference (${\Delta}H_v$) between the repair coating material and base material significantly reduced from 87 to 34 after undergoing heat treatment.

Participation of $K_{ATP}$ Channels in the Antinociceptive Effect of Pregabalin in Rat Formalin Test

  • Kweon, Tae-Dong;Kim, Ji-Young;Kwon, Il-Won;Choi, Jong-Bum;Lee, Youn-Woo
    • The Korean Journal of Pain
    • /
    • 제24권3호
    • /
    • pp.131-136
    • /
    • 2011
  • Background: Pregabalin is an anticonvulsant and analgesic agent that interacts selectively with the voltage-sensitive-$Ca^{2+}$-channel alpha-2-delta subunit. The aim of this study was to evaluate whether the analgesic action of intrathecal (IT) pregabalin is associated with KATP channels in the rat formalin test. Methods: IT PE-10 catheters were implanted in male Sprague-Dawley rats (250.300 g) under inhalation anesthesia using enflurane. Nociceptive behavior was defined as the number of hind paw flinches during 60 min after formalin injection. Ten min before formalin injection, IT drug treatments were divided into 3 groups: normal saline (NS) $20\;{\mu}l$ (CON group); pregabalin 0.3, 1, 3 and $10\;{\mu}g$ in NS $10\;{\mu}l$ (PGB group); glibenclamide $100\;{\mu}g$ in DMSO $5\;{\mu}l$ with pregabalin 0.3, 1, 3 and $10\;{\mu}g$ in NS $5\;{\mu}l$ (GBC group). All the drugs were flushed with NS $10\;{\mu}l$. Immunohistochemistry for the $K_{ATP}$ channel was done with a different set of rats divided into naive, NS and PGB groups. Results: IT pregabalin dose-dependently decreased the flinching number only in phase 2 of formalin test. The log dose response curve of the GBC group shifted to the right with respect to that of the PGB group. Immunohistochemistry for the $K_{ATP}$ channel expression on the spinal cord dorsal horn showed no difference among the groups 1 hr after the formalin test. Conclusions: The antinociceptive effect of pregabalin in the rat formalin test was associated with the activation of the $K_{ATP}$ channel. However, pregabalin did not induce $K_{ATP}$ channel expression in the spinal cord dorsal horn.

Efficient Production of ε-Poly-L-Lysine by Streptomyces ahygroscopicus Using One-Stage pH Control Fed-Batch Fermentation Coupled with Nutrient Feeding

  • Liu, Sheng-Rong;Wu, Qing-Ping;Zhang, Ju-Mei;Mo, Shu-Ping
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권3호
    • /
    • pp.358-365
    • /
    • 2015
  • ε-Poly-L-lysine (ε-PL) is a homopolymer of L-lysine molecules connected between the epsilon amino and alpha carboxyl groups. This polymer is currently used as a natural preservative in food. Insufficient biomass is a major problem in ε-PL fermentation. Here, to improve cell growth and ε-PL productivity, various nitrogen-rich nutrients were supplemented into flask cultures after 16 h cultivation, marking the onset of ε-PL biosynthesis. Yeast extract, soybean powder, corn powder, and beef extract significantly improved cell growth. In terms of ε-PL productivity, yeast extract at 0.5% (w/v) gave the maximum yield (2.24 g/l), 115.4% higher than the control (1.04 g/l), followed by soybean powder (1.86 g/l) at 1% (w/v) and corn powder (1.72 g/l) at 1% (w/v). However, supplementation with beef extract inhibited ε-PL production. The optimal time for supplementation for all nutrients examined was at 16 h cultivation. The kinetics of yeast-extract-supplemented cultures showed enhanced cell growth and production duration. Thus, the most commonly used two-stage pH control fed-batch fermentation method was modified by omitting the pH 5.0-controlled period, and coupling the procedure with nutrient feeding in the pH 3.9-controlled phase. Using this process, by continuously feeding 0.5 g/h of yeast extract, soybean powder, or corn powder into cultures in a 30 L fermenter, the final ε-PL titer reached 28.2 g/l, 23.7 g/l, and 21.4 g/l, respectively, 91.8%, 61.2%, and 45.6% higher than that of the control (14.7 g/l). This describes a promising option for the mass production of ε-PL.

Fe-0.7%C-2.3%Si강의 미세조직과 기계적 성질에 미치는 잔류 오스테나이트 변태 거동 (Transformation Behavior of Retained Austenite on Microstructure and Mechanical Properties in Fe-0.7wt%C-2.3wt%Si Steel)

  • 손제영;권도영;김지훈;김원배;김학진;예병준
    • 한국주조공학회지
    • /
    • 제32권3호
    • /
    • pp.138-143
    • /
    • 2012
  • This steel has been synthesized integrating concepts from Austempering Ductile Cast Iron (ADI) technology. While ADI has excellent mechanical and physical properties, the Young's modules of ADI is approximately 20% lower than steel. In addition, the presence of graphite nodules in ADI can be sites of crack initiation, where fracture takes place at graphite matrix interface. Because of this limitations of ADI, there has been a growing interest in austempered steels as structural materials in resent years. In this investigation, a new steel with microstructure composed of ferrite and austenite and with simultaneous high tensile strength (1,150 MPa) and high ductility (33%) was developed. The goal of this investigation is to obtain a better understanding of deformation and transformation behaviour in high carbon retained austenite(${\gamma}_{HC}$) and over-saturated ferrite(${\alpha}$) during the plastic deformation. A detailed study of the microstructure of this steel was carried out by means of X-ray diffraction (XRD) and electron back scattering diffraction (EBSD) technic. In this way it was shown that BCC phase (BCC) took up the larger part of the nominal strain whereas the a part of retained austenite responded to the mechanincal load by partial martensite transformation, and misorientation change in the retained austenite after plastic strain could be attributed to the large elongation.

Simultaneous Biocatalytic Synthesis of Panose During Lactate Fermentation in Kimchi

  • Han, Nam-Soo;Jung, Yoon-Seung;Eom, Hyun-Ju;Koh, Young-Ho;Robyt, John F.;Seo, Jin-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • 제12권1호
    • /
    • pp.46-52
    • /
    • 2002
  • As a functional additive for intestinal microflora, panose ($6^2-{\alpha}$-D-glucopyranosylmaltose) was synthesized during kimchi fermentation using the glucose transferring reaction of glucansucrase from Leuconostoc mesenteroides. For the glucose transferring reaction, sucrose and maltose were added ($2\%$ each, w/v) to dongchimi-kimchi as the glucosyl donor and acceptor molecule, respectively. After five days of incubation at $10^{\circ}C$, referring to the initial phase for the production of lactic acid in kimchi, over $60\%$ (w/v) of the total sugars were converted into panose and other branched oligosaccharides. Thereafter, the kimchi was stored at $4^{\circ}C$ and the amount of panose remained at a constant level for three weeks, thereby indicating the stability of panose to microbial degradation during the period of kimchi consumption. The use of maltose as the acceptor molecule in the kimchi also facilitated a lower viscosity in the kimchi-juice by preventing the synthesis of a dextran-like polymer which caused an unfavorable taste. Accordingly, the application of this new method of simultaneous biocatalytic synthesis of oligosaccharides during lactate fermentation should facilitate the extensive development of new function-added lactate foods.

상압소결법에 의해 제조한 SiC 복합체의 특성에 미치는 $TiB_{2},ZrB_{2}$와 소결온도의 영향 (Effects of $TiB_{2},ZrB_{2}$ and Sintering Temperature on SiC Composites Manufactured by Pressureless Sintering)

  • 주진영;박미림;신용덕;임승혁
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 하계학술대회 논문집
    • /
    • pp.381-384
    • /
    • 2001
  • The $\beta$-SiC+ZrB$_2$ and $\beta$-SiC+TiB$_2$ceramic electroconductive composites were pressureless-sintered and annealed by adding l2wt% A1$_2$ $O_3$+Y$_2$ $O_3$(6 : 4wt%) powder as a function of sintering temperature. The relative density showed highest value of 84.92% of the theoretical density for SiC-TiB$_2$ at 190$0^{\circ}C$ sintering temperature. The phase analysis of the composites by XRD revealed of $\alpha$-SiC(6H), TiB$_2$, $Al_{5}$Y$_2$ $O_{12}$ and $\beta$-SiC(15R). Flexural strength showed the highest of 230 MPa for SiC-ZrB$_2$ composites sintered at 190$0^{\circ}C$. The vicker's hardness increased with increasing sintering temperature and showed the highest for SiC-ZrB$_2$ composites sintered at 190$0^{\circ}C$. Owing to YAG, the fracture toughness showed the highest of 6.50 MPa . m$^{1}$2/ for SiC-ZrB$_2$ composites at 190$0^{\circ}C$. The electrical resistivity was measured by the Rauw method from $25^{\circ}C$ to $700^{\circ}C$. The electrical resistivity of the composites showed the PTCR(Positive Temperature Coefficient Resistivity).).

  • PDF