• Title/Summary/Keyword: $%Na_2O$

Search Result 4,123, Processing Time 0.032 seconds

Paper-Electrophoretic Separation of Ruthenium Chloro-Complexes (전기영동에 의한 루테늄 염화착물의 분리)

  • Byung-Hun Lee;Cheon-Hwey Cho
    • Nuclear Engineering and Technology
    • /
    • v.16 no.2
    • /
    • pp.58-63
    • /
    • 1984
  • Paper electrophoretic separation of octahedrally bonded (Ruc $l_{6}$ )$^{3-}$ has been carried out by using the specially designed migration apparatus. The supporting electrolyte solutions are as follows: 0.1M-HCl $O_4$, 0.05 M-HCl+0.09M-KCl, 0.1M-HCl, 5$\times$10$^{-3}$ M-NTA, 0.01M-HCl, 0.01M-HCl $O_4$, 0.01M-citric acid, 0.01M-K $H_2$P $O_4$+0.01M-N $a_2$HP $O_4$, 0.05M-borax, 0.025M-N $a_2$C $O_3$+0.025M-NaHC $O_3$, 0.01M-N $a_3$P $O_4$, 0.01M-NaOH and 0.1 M-NaOH. The (Ruc $l_{6}$ )$^{3-}$ appears in 2 to 4 peaks and is found in several chemical species such as (RuCl ($H_2O$)$_{5}$ )$^{2+}$, cis and trans (RuC $l_2$($H_2O$)$_4$)$^{1+}$, (RuC $l_3$($H_2O$)$_3$)$^{0}$ , (RuC $l_4$($H_2O$)$_2$)$^{1-}$, (RuC $l_{5}$ ($H_2O$))$^{2-}$ and (RuC $l_{6}$ )$^{3-}$. The retention value has been found to be highest in the 0.025M-N $a_2$C $O_3$+0.025M-NaHC $O_3$ electrolyte solution.n.

  • PDF

A Study on Na effect of Pt-Na/Ce(1-x)Zr(x)O2 Catalyst Structure for WGS Reaction (WGS 반응에서 Pt-Na/Ce(1-x)Zr(x)O2 촉매의 구조에 따른 Na 영향에 대한 연구)

  • Shim, Jae-Oh;Jeong, Dae-Woon;Jang, Won-Jun;Roh, Hyun-Seog
    • Journal of Hydrogen and New Energy
    • /
    • v.23 no.6
    • /
    • pp.654-659
    • /
    • 2012
  • The interest in water gas shift (WGS) reaction has grown significantly, as a result of the recent advances in fuel cell technology and the need to develop small-scale fuel processors. Recently, researchers have tried to overcome the disadvantages of the commercial WGS catalysts. As a consequence, supported Pt catalysts have attracted a lot of researchers due to high activity and stability for WGS at low temperatures. In this study, $Pt-Na/Ce_{(1-x)}Zr_{(x)}O_2$ catalysts with various Ce/Zr ratio have been applied to WGS at a gas hourly space velocity (GHSV) of $45,515h^{-1}$. According to TPR patterns of $Pt-Na/Ce_{(1-x)}Zr_{(x)}O_2$ catalysts, the reducibility increases with decreasing the $ZrO_2$ content. As a result, Cubic structure $Pt-Na/Ce_{(1-x)}Zr_{(x)}O_2$ catalysts exhibited higher CO conversion than tetragonal structure $Pt-Na/Ce_{(1-x)}Zr_{(x)}O_2$ catalysts. Expecially, Pt-Na/$CeO_2$ exhibited the highest CO conversion as well as 100% selectivity to $CO_2$. Moreover, Pt-Na/$CeO_2$ catalyst showed relatively stable activity with time on stream. The high activity of cubic structure Pt-Na/$CeO_2$ catalyst was correlated to its higher oxygen storage capacity (OSC) of $CeO_2$ and easier reducibility of Pt/$CeO_2$.

Improvement of Sewage Sludge Dewaterability using Fe(II)/Na2S2O8 (Fe(II)/Na2S2O8을 이용한 하수슬러지 탈수능 개선)

  • Han, Jun-Hyuk;Nam, Se-Yong
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.30 no.3
    • /
    • pp.23-28
    • /
    • 2022
  • In order to investigate the degree of sewage sludge dewaterability using Fe(II)/Na2S2O8, STTF, SCST, water content, TS, VS, TB-EPS as carbohydrate and Protein were measured. The dosage of Na2S2O8 was varied from 0.4 to 0.7 mmol/gVS and molar ratio of Fe(II)/Na2S2O8 was varied from 0.5 to 0.7 mol/mol. According to the increase of the dosage of Na2S2O8 and Fe(II)/Na2S2O8 molar ratio, STTF and SCST increased from 1.00 to 15.00 and 4.51, respectively. Water content decreased to 82.6%. TB-EPS as carbohydrate and protein decreasing rate also increased to 37.16% and 57.34%, respectively. Especially, Na2S2O8 0.6 mmol/gVS and Fe(II)/Na2S2O8 0.6 mol/mol condition, water content dercreased to 83.1%, STTF and SCST increased to 13.64 and 4.19 which showed the cost effective improvement of dewaterability. It is considered that SO4- radical generated by Fe(II)/Na2S2O8 degraded EPS and converted bound water to free water.

Formation Behavior and Properties of PEO Films on AZ91 Mg Alloy in 0.1 M NaOH + 0.05 M NaF Solution Containing Various Na2SiO3 Concentrations (AZ91 마그네슘 합금의 플라즈마 전해산화 피막 형성 및 물성에 미치는 0.1 M NaOH + 0.05 M NaF 용액 중 Na2SiO3 농도의 영향)

  • Kwon, Duyoung;Song, Pung-Keun;Moon, Sungmo
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.2
    • /
    • pp.59-66
    • /
    • 2020
  • Effects of Na2SiO3 concentration added into 0.1 M NaOH + 0.05 M NaF solution on the formation behavior and properties of PEO films on AZ91 Mg alloy were investigated under 1200 Hz of alternating current (AC) by voltage-time curves, in-situ observation of arc generation behavior and measurements of film thickness, surface roughness and micro vickers hardness. In the absence of Na2SiO3 in the 0.1 M NaOH + 0.05 M NaF solution, about 4 ㎛ thick PEO film was formed within 1 min and then PEO film did not grow but white spots were formed by local burning. Addition of Na2SiO3 up to 0.2 M caused more increased formation voltage and growth of PEO film with uniform generation of arcs. Addition of Na2SiO3 from 0.2 M to 0.4 M showed nearly the same voltage-time behavior and uniform arc generation. Addition of Na2SiO3 more than 0.5 M resulted in a decrease of formation voltage and non-uniform arc generation due to local burning. PEO film growth rate increased with increasing added Na2SiO3 concentration but maximum PEO film thickness was limited by local burning if added Na2SiO3 concentration is higher than 0.5 M. Surface roughness of PEO film increased with increasing added Na2SiO3 concentration and appeared to be proportional to the PEO film thickness. PEO film hardness increased with increasing added Na2SiO3 concentration and reached a steady-state value of about 930 HV at more than 0.5 M of added Na2SiO3 concentration.

The Characteristics of the Dehydration Reaction and the Durability for the Thermal Decomposition in Na2B4O7·10H2O/Na2B4O7·5H2O System (Na2B4O7·10H2O/Na2B4O7·5H2O 계의 열분해 탈수반응 및 내구성 고찰)

  • Choi, Ho-Sang;Park, Young-Tae
    • Applied Chemistry for Engineering
    • /
    • v.10 no.6
    • /
    • pp.885-888
    • /
    • 1999
  • This study was carried out to determine the reaction kinetic constant of the dehydration - thermal decomposition of $Na_2B_4O_7{\cdot}10H_2O/Na_2B_4O_7{\cdot}5H_2O$ and to investigate the durability during the repeated use of a chemical heat-storage material and the reproducibility of reaction system. The order of the dehydration reaction was 1st-order. The reaction rate was directly proportional to a partial pressure difference of water steam. The kinetic constant was 0.27 and the reproducibility of dehydration reaction for a kinetic constant and a reaction order was excellent. The activity variation in the durability test of a chemical heat-storage material was within range of ${\pm}5%$ during the repeatedly use in several times.

  • PDF

Non-isothermic Analysis of Reaction Rate for the Thermal Decomposition of Na2B4O7·10H2O (Na2B4O7·10H2O 열분해 반응속도의 비등온해석)

  • Choi, Ho-Sang;Park, Young-Tae;Lee, Soo-Kag
    • Applied Chemistry for Engineering
    • /
    • v.8 no.6
    • /
    • pp.1029-1033
    • /
    • 1997
  • Fundamental research of non-isothermic analysis of reaction rate has been carried out for the heat storage system using the thermal decomposition of $Na_2B_4O_7{\cdot}10H_2O$. It was found that the equilibrium temperature of the thermal decomposition reaction was lowered less than 373K in $Na_2B_4O_7{\cdot}10H_2O/Na_2B_4O_7{\cdot}5H_2O$ system, but the heat efficiency was unchanged. The initiation temperature of the reaction was varied from low to high temperature region with heating rate. The reaction order of the dehydration reaction by the thermal decomposition was appeared to be 0.67 by non-isothermic analysis, thereby $Na_2B_4O_7{\cdot}10H_2O$ may be used as a hemical heatstorage material.

  • PDF

Effects of $K_2SO_4$ and $Na_2SO_4$ on $3CaO.SiO_2$ Formation and its Microstructure ($3CaO.SiO_2$ 생성 반응과 미세조직에 미치는 $K_2SO_4$$Na_2SO_4$의 영향)

  • 정해문;한기성;최상흘
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.10
    • /
    • pp.871-879
    • /
    • 1993
  • Effects of K2SO4 and Na2SO4 on C3S formation and its microstructure were investigated. C3S formation was not influenced by addition up to 6.0wt% of K2SO4 as SO3 base, however it was prevented by only 1.0wt% of Na2SO4 addition. C3S prevention by added Na2SO4 was the reason why C2S stabilized by Na+ and SO42- could not react to C3S. Added K2SO4 appeared as K2SO4, however added Na2SO4 appeared as the form of Na2xCa3-xAl2O6, (Na0.8Ca0.1)SO4 and Na2SO4 in interstitial phase.

  • PDF

Preparation of NASIglasses by Sol-Gel Process (솔-젤법에 의한 NASIglass의 제조)

  • 김희주;강은태;김종옥
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.12
    • /
    • pp.1357-1368
    • /
    • 1995
  • Nasigels of composition Na0.75Zr2PSi2O12 and Na3Zr2PSi2O12 have been synthesized by the sol-gel technique using metal alkoxide precursors. The monolithic dry gels of Na0.75Zr2PSi2O12 with no crack have been prepared by the control of the shrinkage rte, but gels of Na3Zr2PSi2O12 were impossible to prepare without cracking. The gels treated up to 80$0^{\circ}C$ led to the formtion of glass but the glasses were converted to the crystalline phases at above this temperature. Crystaline phases precipitated from the Na0.75Zr2PSi2O12 glass were NASICON-like phase, Na2Si2O5, and free Zirconia. Phase that precipitated from the Na3Zr2PSi2O12 was only rhombohedral NASICON. For Na0.75Zr2PSi2O12 gels, framework of PO4 tetrahedra and SiO4(PO4) tetrahedra formed at low temperature but changed to that of SiO4 and SiO4(PO4) tetrahedras as it were crystallized. In the case of Na3Zr2PSi2O12 gel, framework of isolated PO4 and SiO4 tetrahedras formed at low temperature but changed to SiO4(PO4) tetrahedra framework which usually formed in the NASICON crystal after crystallization at high temperature. The gels treated up to 80$0^{\circ}C$ contained the residual water. The ionic conduction was attributed to the motion of proton and Na+ ion at low (up to 150~20$0^{\circ}C$) and high temperatures, respectively. As the temperature of heat treatment increased, ionic conductivity gradaully increased with the extent of precipitation of crystalline phase.

  • PDF

Structure Study of Polycrystalline $Na_3YSi_3O_9$ and Its Substitutes Related to $Na_4CaSi_3O_9,\;Ca_3Al_2O_6$ Structure

  • Kim, Chy-Hyung;Banks, Ephraim
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.1
    • /
    • pp.6-9
    • /
    • 1987
  • The study of the $Na_3YSi_3O_9$ structure, by x-ray diffraction and infrared spectrum, showed that $Na_3YSi_3O_9$ is similar to $Na_4CaSi_3O_9$ except for its being pseudo-cubic instead of cubic. The peaks in the x-ray diffraction pattern of $Na_3YSi_3O_9$ could therefore be indexed on the basis of the $Na_4CaSi_3O_9$ cell. Also, modified $Na_3MSi_3O_9$ (M = Lu, Yb, Tm, Er, Y, Ho, Dy, Gd, Eu, and Sm) type compounds were synthesized by introducing excess sodium, decreasing M(III) concentration, and substituting small amount of phosphorus for silicon. The unit cell parameters of the composition $Na_{3.2}M_{0.7}Si_{2.9}P_{0.1}O_{8.7}$ were estimated from x-ray powder diffraction patterns using the Cohen method.

Synthesis of Na-A Type of Zeolite from Funnel-Glass Waste (브라운관의 후면유리 폐기물을 이용한 제올라이트 합성)

  • 장영남;배인국;채수천;류경원
    • Economic and Environmental Geology
    • /
    • v.34 no.2
    • /
    • pp.167-173
    • /
    • 2001
  • Through alkaline hydrothermal activation processes, Na-A type zeolite was synthesized as a single phase with funnel-glass waste from a television tube factory. The autoclaving was performed in a closed teflon vessel in the range of 80~95$^{\circ}$C. The silica-rich solution as a starting material was hydrothermally synthesized with quartz in IN NaOH by heating 350uC under the pressure of 1,500 atm. $NaAlO_2$ was made from NaOH and Al(OHh by heating 95$^{\circ}$C for 2-3 hours and the molar ratios of it were $Na_2O/Al_2O_3$ = 1.4 and $H_2O/Na_2O$=8. The equi-dimensional A type zeolite (1-2 11) was formed by the simple mixing of the silica-rich solution, glass waste and $NaAlO_23$ for 1-3 hours-heating at $80^{\circ}C$. The characterization of the reaction product shows Na-A as a single phase. The synthesized zeolite has cuba-dodecahedral form and $Ca^{2+}$ ion exchange capacity of the Na-A was in the range of 215-220 mequiva1entilOO g.

  • PDF