• Title/Summary/Keyword: "through-wall" anchor

Search Result 30, Processing Time 0.03 seconds

A Study on the Behavior of the Retaining Walls with the Improved Top-Down Support System using the Building Structure (건축 구조체를 이용한 개량 역타공법 적용시 흙막이 벽체의 거동 연구)

  • Chun, Byung-Sik;Roh, Bae-Young;Do, Jong-Nam;Rew, Woo-Hyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1666-1672
    • /
    • 2008
  • In this study, it collected and analyzed a construction case of the improved top-down support system application field on a case by case retaining wall method. The behavior of horizontal displacement was analyzed according to retaining wall type after reviewing a design stage and estimated horizontal displacement under the construction. The study results showed that it is judged stable until excavation termination irrelevant to a retaining wall method at the improved top-down support system application. It is judged that the settlement of behind ground can minimize because the retaining wall head displacement also behave stably. It was compared the predicted horizontal displacement in design and the measured horizontal displacement acquired through a measurement by using Elasto-Plastic analysis program. The comparison results showed that a similar horizontal displacement was predicted within stability standard irrelevant to a retaining wall method. So, it is decided that the advanced prediction is reasonable by Elasto-Plastic analysis in design applied the improved top-down support system. In the case of the ground anchor method application under a same condition, it is decided that a horizontal displacement will more increase than the improved top-down support system is applied. If a section condition is same, it was decided that to apply top-down support system is more stable than that.

  • PDF

Experimental Analysis of Corbel Part Behaviour in Inground LNG Storage Tank (지하식 저장탱크 Corbel부 실험적 거동 분석)

  • Yoon I.S.;Kim J.K.;Kim Y.K.;Kim J.H.
    • Journal of the Korean Institute of Gas
    • /
    • v.10 no.1 s.30
    • /
    • pp.56-60
    • /
    • 2006
  • The connection part (corbel) between bottom slab and side wall in inground LNG storage tank has hinge conditions partly fixed by using anchor bars to reduce stress concentration. The corbel deforms in both radial and vertical directions under load conditions of the LNG tank such as LNG temperature, hydraulic pressure, etc. Membrane is an important part from the viewpoint of design because the deformation of the corbel is transformed directly to the membrane and superposed with other deformations. Behavior of the corbel has been investigated through various sensors to measure temperature, load and displacement. And the test data have been compared with finite element results analysis to propose a more reasonable design of LNG storage tank.

  • PDF

ShakingTest of Waterfront Structure for Liquefaction Counter measure (항만구조물의 액상화 대책을 위한 진동대 실험에 대한 연구)

  • 박종관
    • Geotechnical Engineering
    • /
    • v.8 no.3
    • /
    • pp.37-50
    • /
    • 1992
  • Liquefaction leads to severe damage to earth structures after an earthquake. In this study, shaking table tests were performed on model waterfront structures as a countermeasure against liquefaction. The waterfront structure was reinforced by a compacted Bone, which was investigated for its effectiveness in protecting the structure from excessive deformation induced by the lateral pressure of liquefied ground. Through the tests . on embankment, double sheet pile wall, and anchor sheet pile wall, good quantitative information on the behavior of flow failure and the extent of reinforcement was obtained. The extent of a compacted zone for the protection of the structure depends on the magnitude of the acceleration during the shaking. The measured deformation was represented in terms of the extent of the compacted zone and the magnitude of the input acceleration.

  • PDF

Characteristics of Collapsed Retaining Walls Using Elasto-plastic Method and Finite Element Method (탄소성 방법과 유한요소법에 의한 붕괴 토류벽의 거동차이 분석)

  • Jeong, Sang-Seom;Kim, Young-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.4
    • /
    • pp.19-29
    • /
    • 2009
  • In this study, a numerical analysis was performed to predict the sequential behavior of anchored retaining wall where the failure accident took place, and verified accuracy of prediction through the comparisons between prediction and field measurement. The emphasis was given to the wall behaviors and the variation of sliding surface based on the two different methods of elasto-plastic and finite element (shear strength reduction technique). Through the comparison study, it is shown that the bending moment and the soil pressure at construction stages produce quite similar results in both the elasto-plastic and finite element method. However, predicted wall deflections using elasto-plastic method show underestimate results compared with measured deflections. This demonstrates that the elasto-plastic method does not clearly consider the influence of soil-wall-reinforcement interaction, so that the tension force (anchor force and earth pressure) on the wall is overestimated. Based on the results obtained, it is found that finite element method using shear strength reduction method can be effectively used to perform the back calculation analysis in the anchored retaining wall, whereas elasto-plastic method can be applicable to the preliminary design of retaining wall with suitable safety factor.

Survey Research on Thermal Situation of Office Buildings (사무소 건축물의 단열상황에 관한 조사연구)

  • Jung, Ui In;Kim, Bong Joo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.3
    • /
    • pp.145-152
    • /
    • 2013
  • This study is to evaluate the thermal insulation of the curtain wall of the buildings constructed since the 1990s to the buildings currently under construction in 2011 and to provide the basic data for repairing and reinforcing and designing the thermal insulation. To this effect, the temperature difference by part was analyzed through measuring the inside and outside surface temperature of the curtain wall of the office building, and thereafter, the conditions of the thermal insulation and the thermal bridge part were examined. The result of the study is as follows; Not only in the winter season when the temperature difference between the indoor-outdoor is over $20^{\circ}C$, but also in the summer season when there is a small temperature difference, the temperature difference between the inside and outside of the frame is $2^{\circ}C{\sim}4^{\circ}C$ equally. Under such conditions as stated above, the thermal bridge occurred, which resulted from the heat flow of the steel frame part (mullion, transom), and therefore, the reinforcement of the thermal insulation is considered to be needed.

A Study on the Self-contained Earth Retaining Wall Method Using Bracing (브레이싱을 이용한 자립식 흙막이 공법에 관한 연구)

  • Kim, Jong-Gil
    • Journal of Digital Convergence
    • /
    • v.17 no.3
    • /
    • pp.205-213
    • /
    • 2019
  • In a construction site, excavation work has a close relation with temporary earth retaining structure. In order to build the underground structure most effectively in a narrow space, prevent soil relaxation of the external behind ground in excavation work, and maintain a ground water level, it is required to install a temporary earth retaining structure that secures safety. To prevent soil washoff in underground excavation work, the conventional method of temporary earth retaining structure is to make a temporary wall and build the internal support with the use of earth anchor, raker, and struct for excavation work. RSB method that improves the problem of the conventional method is to remove the internal support, make use of two-row soldier piles and bracing, and thereby to resist earth pressure independently for underground excavation. This study revealed that through the field application cases of RSB method and the measurement result, the applicability of the method for installing a temporary earth retaining structure, the assessment result, and displacement all met allowable values of measurement, and that the RSB method, compared to the conventional method, improved constructability and economy.

A Study on the Structural Standard of the Tube and Coupler Scaffold (단관비계의 구조규격에 관한 연구)

  • 이영섭
    • Journal of the Korean Society of Safety
    • /
    • v.5 no.2
    • /
    • pp.66-75
    • /
    • 1990
  • This study is conducted to establish the structural standard of tube and coupler scaffold which is suitable for our present stuation through the comparison analysis for domestic and foreign standards as well as measurement of field survey. The results of this study are as follows : 1) The load is classified by three categories, light-duty(equal and lower than 150kg/m$^2$), medium-duty(150-250 kg/m$^2$), heavy-duty(250-350kg/m$^2$), and the equivalent horizontal length of side posts is each, 1.5-1.8m, 1.2-1.5m, equal and lower than 1.2m, and the equivalent horizontal length between front and rear posts is each 1.2-1.5m, 0.9-1.2m, equal and lower thatn 0.9m, in accordance with the load classification. 2) The height between upper and lower runner is equal and lower than 1.5m, and the brace across the width of scaffold should be installed within 15m in horizontal direction at 45 degree angle. 3) The entire scaffold should be securely tied to the wall of permanent structure with uslng anchor and bolt at intervals not to exceed 6m in case of non-connection and 4.5m in case of connection in both horizontal and vertical direction. 4) The post should be installed on the sound foundation tied to lumber footing with using base plate, and standard platform plank should be produced in the factory and widely used in the construction field.

  • PDF

Localization algorithm by using location error compensation through topology constructions (토폴로지 구축을 통한 측정 오차 보정 기반의 위치인식 기법)

  • You, Jin-Ho;Kwon, Young-Goo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.9
    • /
    • pp.2243-2250
    • /
    • 2014
  • In wireless sensor networks(WSNs), geographical routing algorithms can enhance the network capacity. However, in real WSNs, it is difficult for each node to know its physical location accurately. Especially, indoor environments contain various obstacles such as concrete wall, furniture which cause non-line-of-sight(NLOS) conditions. To solve the problem, we propose location error compensation algorithm by using two difference topology constructions. First topology is based on mobile node's location which is obtained from anchor nodes. Second topology is based on mutual distance from neighbor nodes. The proposed algorithm efficiently detects and corrects the location errors and significantly enhances the network performance of geographic routing in the presence of location errors.

Probabilistic analysis of anisotropic rock slope with reinforcement measures

  • Zoran Berisavljevic;Dusan Berisavljevic;Milos Marjanovic;Svetlana Melentijevic
    • Geomechanics and Engineering
    • /
    • v.34 no.3
    • /
    • pp.285-301
    • /
    • 2023
  • During the construction of E75 highway through Grdelica gorge in Serbia, a major failure occurred in the zone of reinforced rock slope. Excavation was performed in highly anisotropic Paleozoic schist rock formation. The reinforcement consisted of the two rows of micropile wall with pre-stressed anchors. Forces in anchors were monitored with load cells while benchmarks were installed for superficial displacement measurements. The aim of the study is to investigate possible causes of instability considering different probability distributions of the strength of discontinuities and anchor bond strength by applying different optimization techniques for finding the critical failure surface. Even though the deterministic safety factor value is close to unity, the probability of failure is governed by variability of shear strength of anisotropic planes and optimization method used for locating the critical sliding surface. The Cuckoo search technique produces higher failure probabilities compared to the others. Depending on the assigned statistical distribution of input parameters, various performance functions of the factor of safety are obtained. The probability of failure is insensitive to the variation of bond strength. Different sampling techniques should yield similar results considering that the sufficient number of safety factor evaluations is chosen to achieve converged solution.

Analysis of the Impact on Prediction Models Based on Data Scaling and Data Splitting Methods - For Retaining Walls with Ground Anchors Installed (데이터 스케일링과 분할 방식에 따른 예측모델의 영향 분석 - 그라운드 앵커가 설치된 흙막이 벽체 대상)

  • Jun Woo Shin;Heui Soo Han
    • The Journal of Engineering Geology
    • /
    • v.33 no.4
    • /
    • pp.639-655
    • /
    • 2023
  • Recently, there has been a growing demand for underground space, leading to the utilization of earth retaining walls for deep excavations. Earth retaining walls are structures that are susceptible to displacement, and their measurement and management are carried out in accordance with the standards established by the Ministry of Land, Infrastructure, and Transport. However, managing displacement through measurement can be considered similar to post-processing. Therefore, in this study, we not only predicted the horizontal displacement of a retaining wall with ground anchors installed using machine learning, but also analyzed the impact of the prediction model based on data scaling and data splitting methods while learning measurement data using machine learning. Custom splitting was the most suitable method for learning and outputting measurement data. Data scaling demonstrated excellent performance, with an error within 1 and an R-squared value of 0.77 when the anchor tensile force and water pressure were standardized. Additionally, it predicted a negative displacement compared to a model that without scaling.