• Title/Summary/Keyword: "On-water"

Search Result 61,231, Processing Time 0.069 seconds

Assessment of Variable Characteristics in Water Quality of the Supply Systems in the Building (건축물내 급수설비의 수질변화 특성과 영향력 평가)

  • Lee, H.D.;Hwang, J.W.;Bae, C.H.;Kim, S.J.
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.4
    • /
    • pp.313-320
    • /
    • 2004
  • In this study, variable characteristics of drinking water and the influences on underground water reservoirs, rooftop water tanks, and service water pipes in the building were assessed. The influence of underground water reservoir material and water capacity on water quality also were assessed. The results are the following as; First of all, the drinking water passing through underground water reservoirs or service water pipes in the building, averagely metal component concentration more increased from percent of 41.3 to percent of 74.2 totally than other items of water quality. On the other hand, both residual chlorine and total solid highly decreased 65.6 percent and 35.3 percent, respectively. Therefore, it was thought that water quality could be getting worse for microorganism re-growth by residual chlorine reduction, and total solid also could be a cause for extraneous matters accumulated in water reservoir. Secondly, the variations on water quality of each stage for water supply system in the building were higher in water service pipes connected from rooftop water tanks to the tap than in underground water reservoirs. In addition to, among of twelve items on water quality, ten items on water quality except dissolved oxygen and residual chlorine increased. Therefore, it was thought that the influence of water service pipes connected from rooftop water tanks to the tap on water quality were higher than other stages of water supply system in the building. Thirdly, in case of materials of underground water reservoir, it was likely that the variation on water quality by stainless steel and concrete materials got some similar. In case of water capacity, the variations on water quality of underground water reservoirs over $1,000m^3$ higher than those under $1,000m^3$. That reasons was likely that the retention time(49.72 hours averagely) of underground water reservoirs over $1,000m^3$ was two times longer than it of those under $1,000m^3$(23.37 hours). Therefore, it was thought that the influence on water quality by materials were some similar, but in case of water capacity, the influence of underground water reservoirs were higher.

Introduction of Water Safety Plan in Korea (물안전계획(Water Safety Plan)의 국내 도입방안)

  • Kim, Jin-Keun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.4
    • /
    • pp.535-545
    • /
    • 2012
  • Recently, drinking water quality has significantly improved with the progress of water treatment technologies, however, customer's trust on tap water is still relatively low. Low trust on water quality is mainly due to vague anxiety. Therefore, to improve customer's trust on drinking water quality new strategy such as water safety plan(WSP) which recommended by WHO and IWA should be introduced. WSP can be defined as an approach which uses comprehensive risk assessment and risk management approach that encompasses all steps in water supply from catchment to consumer to ensure the safety of a drinking water supply. In this study, cases on WSP introduction in other countries as well as strategy for the introduction of WSP in Korea were investigated. In addition, recommendations on the improvement of the current water contamination response manual was suggested based on the analysis of the existing manual at a full scale water treatment plant.

A Study on the Pollution Sources of Simple water Supply Piped System using Statistical Analysis (통계적 분석을 이용한 간이급수시설의 오염원에 관한 연구)

  • 이홍근;김현용;백도현;김지영;이태호
    • Journal of environmental and Sanitary engineering
    • /
    • v.14 no.2
    • /
    • pp.56-67
    • /
    • 1999
  • This study was performed to suggest the basic data and plans for the establishment of safe water supply plans in simple water supply piped system in the rural areas. In 4 different places, 24 points of water sources 36 points of taps from water sources were sampled. Of the whole 60 points, 55 points were ground water and 5 points were surface water. 14 items were measured for the analysis of water quality on each samples. The measured items were analyzed again by statistical method ; cluster analysis and principle components analysis. The results of this study are as followed. 1) In water quality analysis on water sources, 4 items, bacteria, E.coli, NH3-N and Fe exceed the standard. Of 24 points, 20 points(83%) on bacteria, 1 point(4%) on NH3-N and Fe exceed the standard. 2) In water quality analysis on near and remote taps, 4 items, bacteria, E.coli, NH3-N and Fe , exceed the standard. Of 36 points, 20 points (81%) on bactria, 1 pint(3%) on NH3-N and Fe exceed the standard. 3)Cluster analysis on water quality shows the differences by the kinds of water sources, geographical characteristics and distance from water sources. 4) Principle components analysis on ground water shows that Factor 1 and Factor 3 are natural fluctuation by the content of soil. Also, Factor 2 and Factor 4 are penetration of pollutants to underground. Therefore, it is needed to take deeper ground water in order to prevent from pollution in the areas which have ground water as water source . 5) Principle components analysis on surface water shows that Factor 1 is penetration of vacteria from surface to water source when rainfalls. Also, Factor 2 is fluctuation of water quality by the geographical characteristics. Therefore, the counterplans against non-point pollution source must be taken. Filtration and disinfection facilities are needed in the areas which have surface water as water source.

  • PDF

Water Level Tracking System based on Morphology and Template Matching

  • Ansari, Israfil;Jeong, Yunju;Lee, Yeunghak;Shim, Jaechang
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.12
    • /
    • pp.1431-1438
    • /
    • 2018
  • In this paper, we proposed a river water level detection and tracking of the river or dams based on image processing system. In past, most of the water level detection system used various water sensors. Those water sensors works perfectly but have many drawbacks such as high cost and harsh weather. Water level monitoring system helps in forecasting early river disasters and maintenance of the water body area. However, the early river disaster warning system introduces many conflicting requirements. Surveillance camera based water level detection system depends on either the area of interest from the water body or on optical flow algorithm. This proposed system is focused on water scaling area of a river or dam to detect water level. After the detection of scale area from water body, the proposed algorithm will immediately focus on the digits available on that area. Using the numbers on the scale, water level of the river is predicted. This proposed system is successfully tested on different water bodies to detect the water level area and predicted the water level.

Technical Advancements Needed for the Introduction of Distributed Water Infrastructure to Urban Wastewater Management Systems (분산형 물 인프라의 도시 하수관리 시스템 도입을 위한 기술적 발전방안)

  • Yongju Choi;Wooram Lee
    • Journal of Korean Society on Water Environment
    • /
    • v.39 no.1
    • /
    • pp.76-86
    • /
    • 2023
  • We are on the verge of paradigm shift for the design and operation of our urban water systems from treatment- and efficiency-based to recirculation- and sustainability-based. One of the most frequently suggested alternatives to embody this paradigm shift is to decentralize the currently highly centralized urban water infrastructure. However, claims for water infrastructure decentralization are often criticized due to poor economic feasibility, unstable performance, and unprofessional operation and maintenance. The current study critically reviews the literature to discuss the technical advancement needs to overcome such challenges. Firstly, decentralized water infrastructure was briefly defined and the rationale for the proposal of its introduction to the next-generation urban water systems was laid down. The main discussion focused on the following water technologies, which require special attention when working with decentralized water infrastructure: i) material collection, storage, and transport; ii) easily scalable water treatment; iii) sensor, information, and communications; and iv) system optimization. The principles, current development status, and challenges were discussed for each of the water technologies. The discussion on the water technologies has enabled the identification of future research needs for their application to the next-generation urban water systems which will be designed following decentralized water infrastructure. This paper will significantly improve the current understanding on water infrastructure decentralization and provides insight on future direction of water technology development.

A Research on Understanding about Water Usage, Recognition and Application among Primary and Secondary School Teachers in Daegu (물사용 인식 및 실천에 관한 조사 연구-대구광역시 초${\cdot}$중등교사를 대상으로-)

  • Kwak, Hong-Tak;Jeon, Eun-Jeong;Lee, Ok-Hee
    • Hwankyungkyoyuk
    • /
    • v.17 no.2
    • /
    • pp.60-78
    • /
    • 2004
  • A survey performed on property of water usage, a recognition and stand on water, and awareness of practice related to water saving among primary and secondary teachers in Daegu metropolitan city leads to the following result. First, regarding the actual condition of water usage, boiled tap water was most preferred, followed by purified tap water, mineral water, and water from a mineral spring respectively. Second, the result of a survey regarding a recognition and stand on water presents that the quality of purified water and mineral water is generally trusted, not including tap water. A majority of teachers barely had any ideas on the process of tap water supplies and sewage disposal system. Third, another survey was performed to determine whether there's a gender difference on a general recognition of and stand on water usage, actual practice of water saving and love for water. As a result, 7 out of 25 questions showed the difference of significance by p<.05. As for tap water service and sewage disposal system, there were differences on 5 out of 6 questions, indicating that male teachers are more knowledgable than their female counterparts. Fourth, the result of the research about the recognition and attitudes about water and water saving of the teachers who were categorized by the age group showed that 14 questions of the 25 questions had differences in p<.05 level. Teachers in their twenties and thirties had less interest than those in their forties and fifties.

  • PDF

Contributions to the Impaired Water Bodies by Hydrologic Conditions for the Management of Total Maximum Daily Loads (수질오염총량관리 목표수질 초과지역에 대한 유황별 초과기여도 분석)

  • Park, Jun Dae;Oh, Seung Young
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.4
    • /
    • pp.574-581
    • /
    • 2012
  • It is important to analyze the status of water quality with relation to the stream flow to attain water quality goal more effectively in the unit watersheds for the management of Total Maximum Daily Loads (TMDLs). This study developed a flow duration-water quality distribution graph to figure out water quality appearances on the flow variation and analyzed contributions of water quality observations to the impaired water bodies quantitatively by hydrologic conditions. Factors relating to water quality variation can be analyzed more precisely and assessed on the base of quantified contributions. It is considered that this approach could be utilized to establish a more effective plan for the water quality improvement including the prioritization of pollution reduction options.

Environmentally Assisted Cracking of Alloys at Temperatures near and above the Critical Temperature of Water

  • Watanabe, Yutaka
    • Corrosion Science and Technology
    • /
    • v.7 no.4
    • /
    • pp.237-242
    • /
    • 2008
  • Physical properties of water, such as dielectric constant and ionic product, significantly vary with the density of water. In the supercritical conditions, since density of water widely varies with pressure, pressure has a strong influence on physical properties of water. Dielectric constant represents a character of water as a solvent, which determines solubility of an inorganic compound including metal oxides. Dissociation equilibrium of an acid is also strongly dependent on water density. Dissociation constant of acid rises with increased density of water, resulting in drop of pH. Density of water and the density-related physical properties of water, therefore, are the major governing factors of corrosion and environmentally assisted cracking of metals in supercritical aqueous solutions. This paper discusses importance of "physical properties of water" in understanding corrosion and cracking behavior of alloys in supercritical water environments, based on experimental data and estimated solubility of metal oxides. It has been pointed out that the water density can have significant effects on stress corrosion cracking (SCC) susceptibility of metals in supercritical water, when dissolution of metal plays the key role in the cracking phenomena.

Watershed Selection for Diffuse Pollution Management Based on Flow Regime Alteration and Water Quality Variation Analysis (유황분석과 수질변화 평가를 통한 비점오염원 관리대상지역 선정방법 연구)

  • Jung, Woohyeuk;Yi, Sangjin;Kim, Geonha;Jeong, Sangman
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.2
    • /
    • pp.228-234
    • /
    • 2011
  • The goal of water quality management on stream and watershed is to focus not on discharged loads management but on a water quality management. Discharged loads management is not goal of water quality management but way for perform with total maximum daily loads management. It is necessary to estimate the relation between non-point source with stromwater runoff (NPSSR) and water quality to select a watershed where it is required to manage NPSSR for water quality improvement. To evaluate the effects of NPSSR on stream's water quality, we compare the aspects of water quality in dry and wet seasons using flow duration curve analysis based on flow rate variation data by actual surveying. In this study we attempt to quantify the variation characteristic of water quality and estimate the Inflow characteristic of pollution source with water quality and flow rate monitoring on 10 watersheds. We try to estimate water quality and flow rate by regression analysis and try again regression analysis with each high and low water quality data more than estimations. An analysis of relation between water quality and flow rate of 10 watersheds shows that the water quality of the Nonsan and the Ganggyeong streams had been polluted by NPSSR pollutants. Other eight streams were important point source more than NPSSR. It is wide variation range of $BOD_5$ also high average concentration of $BOD_5$. We have to quantify water quality variation by cv1 in wet season and cv365 in dry season with comparing the estimate of high water quality and low water quality. This method can be used to indicator for water quality variation according to flow rate.

The Regulations and Guidelines for Management of Corrosive Water and Pipe Corrosion in Drinking Water Distribution System in North America (상수원 관망 부식 제어를 위한 부식성 수질 관리: 북미지역 관리 사례 및 국외 현황)

  • Kim, Minhee;Hyun, Seunghun;Lee, Won-Seok;Loretta, Y. Li
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.3
    • /
    • pp.359-369
    • /
    • 2017
  • Water distribution systems supply drinking water to consumers' taps. Internal corrosion of metallic pipe used in drinking water distribution systems has reduced water quality and led to increased levels of toxic heavy metals such as lead, copper and nickel. These problems have been experienced to varying degrees by water utilities in many countries. North America has successfully managed and controlled pipe corrosion and corrosive water in water distribution system based on various policies, regulations and rules. Practical and engineering guidelines for evaluation of pipe corrosion and determination of treatment options are also provided to assist drinking water supplies. In addition, the corrosion mechanism in water distribution systems, such as the complex effects of physical and chemical parameters on the corrosion pipes has been improved to accurately predict corrosion rates of metallic pipes in actual water distribution systems. This paper reviews various regulations, policy statement, and treatment produces on controlling corrosion in drinking water distribution systems in US and Canada and then offers suggestion for management of corrosive water and pipe corrosion in drinking water distribution system in Korea.