The paper deals with the study of the dispersion of quasi-Lamb waves in a hydro-elastic system consisting of an elastic plate, barotropic compressible inviscid fluid, and rigid wall. The motion of the plate is described using the exact equations of elastodynamics, however, the flow of the fluid using the linearized equations and relations of the Navier-Stokes equations. The corresponding dispersion equation is obtained and this equation is solved numerically, as a result of which the corresponding dispersion curves are constructed. The main attention is focused on the effect of the presence of the fluid and the effect of the fluid layer thickness (i.e., the fluid depth) on the dispersion curves. The influence of the problem parameters on the dispersion curves related to the quasi-Scholte wave is also considered. As a result of the analyses of the numerical results, concrete conclusions are made about the influence of the fluid depth, the rigid wall restriction on the fluid motion, and the material properties of the constituents on the dispersion curves. During the analyses, the zeroth and the first four modes of the propagating waves are considered.