Annual Conference on Human and Language Technology (한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리))
Human and Language Technology (SIGHLT)
- Annual
- /
- 2005-3053(pISSN)
Domain
- Information/Communication > Information Processing Theory
2018.10a
-
본 연구진은 모든 형태소 분석 후보에 적절한 의존관계를 부여하여 구문분석 트리 후보를 순위화하여 제시하는 한국어 구문 분석 시스템 BCD-KL-Parser를 개발하고 있다. 이 시스템의 최종목표는 형태소 분석후보와 구문분석 트리 후보를 줄여나감으로써, 구문분석의 정확도와 실행 속도를 높이는 것이다. 본 논문에서 소개하는 BCD-KL-Parser에서는 형태적 중의성 해소규칙을 정의하여 형태소 분석후보의 수를 줄이고, 용언의 하위범주화 정보와 선택제약 정보 그리고 의존관계 제약규칙을 정의하여 구문분석 트리 후보의 수를 최소화할 수 있었다. 그 결과 '21세기 세종계획 구문분석 말뭉치'에서 무작위로 추출한 2,167문장에 대하여 UAS 92.27%를 달성할 수 있었다.
-
구문 분석이란 문장을 단어, 어절, 구 등의 구성 성분으로 분해하고 각각의 구조적 정보를 분석하여 문장의 구조를 알아내는 작업을 말한다. 최근 의존 구문 분석은 심층 신경망을 이용하는 방법이 활발히 연구되고 있다. 특히 포인터 네트워크를 사용하는 방법은 다른 심층 신경망보다 높은 성능을 보이고 있다. 그러나 포인터 네트워크의 사용만으로 의존 관계와 의존 관계명을 예측하는 것은 한계가 존재한다. 본 논문에서는 최근 사용하는 단어 표상 방법 별로 비교 실험을 진행하고 의존 구문 분석에서 GloVe의 성능이 가장 좋음을 보인다. 또한 언어 모델을 통한 단어 표상 방법인 ELMo와 멀티헤드 어텐션을 사용하여 포인터 네트워크만을 사용 했을 때보다 높은 성능(UAS 92.85%, LAS 90.65%)을 보였다.
-
구문 분석은 문장의 구조를 이해하며 의미의 중의성을 해결하는 것이다. 일반적으로 한국어는 어순 배열의 자유도가 높고 문장 성분의 생략이 빈번한 특성이 있기 때문에 의존 구문 분석이 주된 연구 대상이 되어 왔다. 스택-포인터 네트워크 모델은 의존 구문 파서에 맞게 포인터 네트워크 모델을 확장한 것이다. 스택-포인터 네트워크는 각 단어에서 의존소를 찾는 하향식 방식의 모델로 기존 모델의 장점을 유지하면서 각 단계에서 파생된 트리 정보도 사용한다. 본 연구에서는 스택-포인터 네트워크 모델을 한국어에 적용해보고 이와 함께 어절 정보를 반영하는 방법을 제안한다. 모델의 실험 결과는 세종 구문 구조를 중심어 후위(head-final)를 엄격히 준수하여 의존 구문 구조로 변환한 것을 기준으로 UAS 92.65%의 정확도를 얻었다.
-
본 논문에서는 기존 Stack Pointer Network의 의존 파싱 모델을 확장한 Bi-Stack Pointer Network를 제안한다. Stack Pointer Network는 기존의 Pointer Network에 내부 stack을 만들어 전체 문장을 읽어 dependency tree를 구성한다. stack은 tree의 깊이 우선 탐색을 통해 선정되고 Pointer Network는 stack의 top 단어(head)의 자식(child)을 선택한다. 제안한 모델은 기존의 Stack Pointer Network가 지배소(head)정보로 의존소(child)를 예측하는 부분에 Biaffine attention을 통해 의존소(child)에서 지배소(head)를 예측하는 방향을 추가하여 양방향 예측이 가능하게 한 모델이다. 실험 결과, 제안 Bi-Stack Pointer Network모델은 UAS 91.53%, LAS 90.93%의 성능을 보여주어 기존 최고 성능을 개선시켰다.
-
기존의 검색 기반 챗봇 시스템과 다르게 생성 기반 챗봇 시스템은 사전에 정의된 응답에 의존하지 않고 채팅 말뭉치를 학습한 신경망 모델을 사용하여 응답을 생성한다. 생성 기반 챗봇 시스템이 사람과 같이 자연스러운 응답을 생성하려면 이전 문맥을 반영해야 할 필요가 있다. 기존 연구에서는 문맥을 반영하기 위해 이전 문맥과 입력 발화를 통합하여 하나의 벡터로 표현했다. 이러한 경우 이전 문맥과 입력 발화가 분리되어 있지 않아 이전 문맥이 필요하지 않는 경우 잡음으로 작용할 수 있다. 본 논문은 이러한 문제를 해결하기 위해 입력 발화와 이전 문맥을 각각의 벡터로 표현하는 방법을 제안한다. 또한 생성적 적대적 신경망을 통해 챗봇 시스템을 보강하는 방법을 제안한다. 채팅 말뭉치(55,000 개의 학습 데이터, 5,000개의 검증 데이터, 5,260 개의 평가 데이터)를 사용한 실험에서 제안한 문맥 반영 방법과 생성적 적대적 신경망을 통한 챗봇 시스템 보강 방법은 BLEU와 임베딩 기반 평가의 성능 향상에 도움을 주었다.
-
대화 시스템에서 사람과 기계와의 모든 발화에서 발생하는 상황들을 모두 규칙화할 수 없기 때문에 자연스러운 대화가 단절되는 breakdown 현상이 빈번하게 일어날 수 있다. 이런 현상이 발생하는 이유는 다음과 같다. 첫째, 대화에서는 다양한 도메인이 등장하기 때문에 시스템이 커버할 수 있는 리소스가 부족하며, 둘째, 대화 데이터에서 학습을 위한 annotation되어 있는 많은 양의 코퍼스를 보유하기에는 한계가 있으며, 모델에 모든 대화 흐름의 히스토리를 반영하기 어렵다. 이런 한계점이 존재함에도 breakdown detection은 자연스러운 대화 시스템을 위해서는 필수적인 기능이다. 본 논문은 이런 이슈들을 해소하기 위해서 memory attention기반의 새로운 모델을 제안하였다. 제안한 모델은 대화내에 발화에 대해 memory attention을 이용하여 과거 히스토리가 반영되기 때문에 자연스러운 대화흐름을 잘 detection할 수 있으며, 기존 모델과의 성능비교에서 state-of-the art 결과를 도출하였다.
-
챗봇은 사람과 기계가 자연어로 된 대화를 주고받는 시스템이다. 최근 대화형 인공지능 비서 시스템이 상용화되면서 일반적인 대화와 질의응답을 함께 처리해야할 필요성이 늘어나고 있다. 본 논문에서는 기계독해 기반 질의응답과 Transformer 기반 자연어 생성 모델을 함께 사용하여 하나의 모델에서 일반적인 대화와 질의응답을 함께 하는 기계독해 기반 질의응답 챗봇을 제안한다. 제안 모델은 기계독해 모델에 일반대화를 판단하는 옵션을 추가하여 기계독해를 하면서 자체적으로 문장을 분류하고, 기계독해 결과를 통해 자연어로 된 문장을 생성한다. 실험 결과 일반적인 대화 문장과 질의를 높은 성능으로 구별하면서 기계독해의 성능은 유지하였고 자연어 생성에서도 분류에 맞는 응답을 생성하였다.
-
대화 발화 예측(Next Utterance Classification)은 Multi-turn 대화에서 마지막에 올 발화를 정답 후보들 중에서 예측을 하는 연구이다. 기존에 제안된 LSTM 기반의 Dual Encoder를 이용한 모델에서는 대화와 정답 발화에 대한 관계를 고려하지 않는 문제와 대화의 길이가 너무 길어 중간 정보의 손실되는 문제가 존재한다. 본 연구에서는 이러한 두 문제를 해결하기 위하여 ESIM구조를 통한 단어 단위의 attention, 대화의 turn별 문장 단위의 attention을 제안한다. 실험 결과 총 5000개의 검증 대화 데이터에 대하여 1 in 100 Recall@1의 성능이 37.64%로 기존 모델 대비 약 2배 높은 성능 향상을 나타내었다.
-
최근 존재하는 대부분의 관계 추출 모델은 언급 수준의 관계 추출 모델이다. 이들은 성능은 높지만, 문서에 존재하는 다수의 문장을 처리할 때, 문서 내에 주요 개체 및 여러 문장에 걸쳐서 표현되는 개체간의 관계를 분류하지 못한다. 이는 높은 수준의 관계를 정의하지 못함으로써 올바르게 데이터를 정형화지 못하는 중대한 문제이다. 해당 논문에서는 이러한 문제를 타파하기 위하여 여러 문장에 걸쳐서 개체간의 상호작용 관계도 파악하는 전역 수준의 관계 추출 모델을 제안한다. 제안하는 모델은 전처리 단계에서 문서를 분석하여 사전 지식베이스, 개체 연결 그리고 각 개체의 언급횟수를 파악하고 문서 내의 주요 개체들을 파악한다. 이후 언급 수준의 관계 추출을 통하여 1차적으로 단편적인 관계 추출을 실행하고, 주요개체와 관련된 관계는 외부 메모리에 샘플로 저장한다. 이후 단편적 관계들과 외부메모리를 이용하여 여러 문장에 걸쳐 표현되는 개체 간 관계를 알아낸다. 해당 논문은 이러한 모델의 구조도와 실험방법의 설계에 대하여 설명하였고, 해당 실험의 기대효과 또한 작성하였다.
-
관계 추출을 위한 원격 지도 학습은 사람의 개입 없이 대규모 데이터를 생성할 수 있는 효율적인 방법이다. 그러나 원격 지도 학습은 노이즈 데이터 문제가 있으며, 노이즈 데이터는 두 가지 유형으로 나눌 수 있다. 첫 번째는 관계 표현 자체가 없는 문장이 연결된 경우이고, 두 번째는 관계 표현은 있는 문장이지만 다른 관계 표현도 함께 가지는 경우이다. 주로 문장의 길이가 길고 복잡한 문장에서 두 번째 노이즈 데이터 유형이 자주 발견된다. 본 연구는 두 번째 경우의 노이즈를 줄임으로써 관계 추출 모델의 성능을 향상시키기 위해 확장된 최단 의존 경로를 사용하는 CNN 기반 관계 추출 모델을 제안한다. 본 논문에서 제안한 방법의 우수성을 입증하기 위해, 한국어 위키피디아와 DBpedia 기반의 원격 지도 학습 데이터를 수집하여 평가한 결과, 본 논문에서 제안한 방법이 위 문제를 해결하는데 효과적이라는 것을 확인하였다.
-
기계학습 기반인 관계추출 모델을 설계할 때 다량의 학습데이터를 빠르게 얻기 위해 원격지도학습 방식으로 데이터를 수집한다. 이러한 데이터는 잘못 분류되어 학습데이터로 사용되기 때문에 모델의 성능에 부정적인 영향을 끼칠 수 있다. 본 논문에서는 이러한 문제를 강화학습 접근법을 사용해 해결하고자 한다. 본 논문에서 제안하는 모델은 오 분류된 데이터로부터 좋은 품질의 데이터를 찾는 문장선택기와 선택된 문장들을 가지고 학습이 되어 관계를 추출하는 관계추출기로 구성된다. 문장선택기는 지도학습데이터 없이 관계추출기로부터 피드백을 받아 학습이 진행된다. 이러한 방식은 기존의 관계추출 모델보다 좋은 성능을 보여주었고 결과적으로 원격지도학습데이터의 단점을 해결한 방법임을 보였다.
-
인과관계 추출이란 어떠한 문장에서 인과관계가 존재하는지, 인과관계가 존재한다면 원인과 결과의 위치까지 분석하는 것을 말한다. 하지만 인과관계 관련 연구는 그 수가 적기 때문에 말뭉치의 수 또한 적으며, 기존의 말뭉치가 존재하더라도 인과관계의 특성상 새로운 도메인에 적용할 때마다 데이터를 다시 구축해야 하는 문제가 있다. 따라서 본 논문에서는 도메인 특화에 따른 데이터 구축비용 문제를 최소화하면서 새로운 도메인에서 인과관계 모델을 잘 구축할 수 있는 통계 기반 모델을 이용한 인과관계 데이터 확장 방법과 도메인에 특화되지 않은 일반적인 언어자질과 인과관계에 특화된 자질을 심층 학습 기반 모델에 적용함으로써 성능 향상을 보인다.
-
최근 빅 데이터와 인공지능의 발달과 함께 감성 분석에 대한 연구가 활발해지고 있다. 더불어 감성 분석을 위한 긍/부정 어휘가 풍부한 텍스트 문서들에 대한 수집의 필요성도 높아지고 있다. 본 논문은 긍/부정어휘가 풍부한 텍스트 문서들을 수집하는 기존의 수집 방법에 대한 문제점에 대하여 해결방안을 제시한다. 기존의 수집 방법으로 일단 모든 URL들을 저장하고 필터링 과정을 거쳐 긍/부정 어휘가 풍부한 텍스트 문서들을 수집하고자 한다면 불필요한 텍스트 문서 저장과 필터링 과정에서 메모리와 시간을 낭비하게 된다. 기존의 수집 방법에 블룸 필터라는 자료구조를 적용시켜 메모리와 시간을 낭비하게 되는 문제점을 해결하고자 한다.
-
감성 분석은 특정 대상에 대한 의견을 수집하고 분류하는 과정이다. 그러나 자연어에 담김 사람의 주관을 파악하는 일은 어려운 일로써, 기존의 감성 단어 사전이나 확률 모델은 이러한 문제를 해결하기 어려웠으나 딥 러닝의 발전으로 문제 해결을 시도할 수 있게 됐다. 본 논문에서는 사전 학습된 문맥 표현을 한국어 감성 분석에 활용하여 더 높은 성능을 낼 수 있음을 보인다.
-
본 논문은 한국어 문장의 형태소, 음절, 자소를 동시에 각자 다른 합성곱층을 통과시켜 문장의 감성을 분류하는 Multi-channel CNN을 제안한다. 오타를 포함하는 구어체 문장들의 경우에 형태소 기반 CNN으로 추출 할 수 없는 특징들을 음절이나 자소에서 추출 할 수 있다. 한국어 감성분석에 형태소 기반 CNN이 많이 쓰이지만, 본 논문의 Multi-channel CNN 모델은 형태소, 음절, 자소를 동시에 고려하여 더 정확하게 문장의 감성을 분류한다. 본 논문이 제안하는 모델이 형태소 기반 CNN보다 야구 댓글 데이터에서는 약 4.8%, 영화 리뷰 데이터에서는 약 1.3% 더 정확하게 문장의 감성을 분류하였다.
-
한국어 감정분석에 대한 연구는 활발하게 진행되고 있다. 그렇지만 학습 및 평가 말뭉치 표현에 대한 논의가 부족하다. 본 논문은 한국어 감정분석에 대해 정의하고, 말뭉치 제작을 위한 가이드라인을 제시한다. 또한, 태깅 가이드라인에 따라 말뭉치를 구축하였으며 한국어 감정분석을 위한 반자동 태깅 도구를 구현하였다.
-
감정분석은 텍스트에서 나타난 저자 혹은 발화자의 태도, 의견 등과 같은 주관적인 정보를 추출하는 기술이며, 여론 분석, 시장 동향 분석 등 다양한 분야에 두루 사용된다. 감정분석 방법은 사전 기반 방법, 기계학습 기반 방법 등이 있다. 본 논문은 사전 기반 감정분석에 필요한 한국어 감정사전 자동 구축 방법을 제안한다. 본 논문은 영어 감정사전으로부터 한국어 감정사전을 자동으로 구축하는 방법이며, 크게 세 단계로 구성된다. 첫 번째는 영한 병렬말뭉치를 이용한 영한사전을 구축하는 단계이고, 두 번째는 영한사전을 통한 이중언어 그래프를 생성하는 단계이며, 세 번째는 영어 단어의 감정값을 한국어 단어의 감정값으로 전파하는 단계이다. 본 논문에서는 제안된 방법의 유효성을 보이기 위해 사전 기반 한국어 감정분석 시스템을 구축하여 평가하였으며, 그 결과 제안된 방법이 합리적인 방법임을 확인할 수 있었으며 향후 연구를 통해 개선한다면 질 좋은 한국어 감정사전을 효과적인 방법으로 구축할 수 있을 것이다.
-
채팅 시스템을 잘 만들기 위해서는 양질, 대량의 채팅 말뭉치가 굉장히 중요하지만 구축 시 많은 비용이 발생한다는 어려움이 있었다. 따라서 본 논문에서는 영화 자막, 극대본과 같이 대량의 발화 데이터를 이용하여 채팅 말뭉치를 반자동으로 확장하는 방법을 제안한다. 채팅 말뭉치 확장을 위해 미리 구축된 채팅 말뭉치와 유사도 기법을 이용하여 채팅 유사도를 구하고, 채팅 유사도가 실험을 통해 얻은 임계값보다 크다면 올바른 채팅쌍이라고 판단하였다. 그리고 길이가 매우 짧은 채팅성 발화의 채팅 유사도를 효과적으로 계산하기 위해 본 논문에서 제안하는 것은 형태소 단위 임베딩 벡터와 합성곱 신경망 모델을 이용하여 발화 단위 표상을 생성하는 것이다. 실험 결과 기본 발화 단위 표상 생성 방법인 TF를 이용하는 것보다 정확률, 재현율, F1에서 각각 5.16%p, 6.09%p, 5.73%p 상승하여 61.28%, 53.19%, 56.94%의 성능을 가지는 채팅 말뭉치 반자동 구축 모델을 생성할 수 있었다.
-
이 논문은 가장 잘 알려진 어휘부중 하나인 워드넷의 활용 범위 확장을 위해 워드넷 신셋에 "사건구조 프레임(Event Structure Frame)"을 주석하는 연구에 관한 것이다. 워드넷을 비롯하여 현재 사용되고 있는 어휘부는 풍부한 어휘의미정보가 구조화되어 있지만, 사건구조에 관한 정보를 포함하고 있지는 않다. 이 연구의 가장 큰 기여는 워드넷에 사건구조 프레임을 추가함으로써 워드넷과의 연결만으로 핵심적인 어휘의미정보를 모두 추출할 수 있도록 해준다는 점이다. 예를 들어 텍스트 추론, 자연어처리, 멀티 모달 태스크 등은 어휘의미정보와 배경지식(상식)을 이용하여 태스크를 수행한다. 워드넷에 대한 사건구조 주석은 자동사건구조 주석 시스템인 GESL을 이용하여 워드넷 신셋에 있는 예문에 먼저 자동 주석을 하고, 오류에 대해 수동 수정을 하는 반자동 방식이다. 사전 정의된 23개의 사건구조 프레임에 따라 예문에 출현하는 타겟 동사를 분류하고, 해당 프레임과 매핑한다. 현재 이 연구는 시작 단계이며, 이 논문에서는 빈도 순위가 가장 높은 100개의 동사와 각 사건구조 프레임별 대표 동사를 포함하여 총 106개의 동사 레마에 대해 실험을 진행하였다. 그 동사들에 대한 전체 워드넷 신셋의 수는 1337개이다. 예문이 없어서 GESL이 적용될 수 없는 신셋을 제외하면 1112개 신셋이다. 이 신셋들에 대해 GESL을 적용한 결과 F-Measure는 73.5%이다. 향후 연구에서는 워드넷-사건구조 링크를 계속 업데이트하면서 딥러닝을 이용해 GESL 성능을 향상 할 수 있는 방법을 모색할 것이다.
-
감성분석(Sentiment Analysis)은 텍스트에 나타난 감성을 분석하는 기술로 자연어 처리 분야 중 하나이다. 한국어 텍스트를 감성분석하기 위해 다양한 기계학습 기법이 많이 연구되어 왔으며 최근 딥러닝의 발달로 딥러닝 기법을 이용한 감성분석도 활발해지고 있다. 딥러닝을 이용해 감성분석을 수행할 경우 좋은 성능을 얻기 위해서는 충분한 양의 학습데이터가 필요하다. 하지만 감성분석에 적합한 학습데이터를 얻는 것은 쉽지 않다. 본 논문에서는 이와 같은 문제를 해결하기 위해 기존에 구축되어 있는 감성사전을 활용한 대용량 학습데이터 구축 방안을 제안한다.
-
다중 문서 제목 추출은 하나의 주제를 가지는 다중 문서에 대한 제목을 추출하는 것을 말한다. 일반적으로 다중 문서 제목 추출에서는 다중 문서 집합을 단일 문서로 본 다음 키워드를 제목 후보군으로 추출하고, 추출된 후보를 나열하는 형식의 연구가 많이 진행되어져 왔다. 하지만 이러한 방법은 크게 두 가지의 한계점을 가지고 있다. 먼저, 다중 문서를 단순히 하나의 문서로 보는 방법은 전체적인 주제를 반영한 제목을 추출하기 어렵다는 문제점이 있다. 다음으로, 키워드를 조합하는 형식의 방법은 키워드의 단위를 찾는 방법에 따라 추출된 제목이 자연스럽지 못하다는 한계점이 있다. 따라서 본 논문에서는 이 한계점들을 보완하기 위하여 단어 관련성 추정과 Byte Pair Encoding을 이용한 요약 기반의 다중 뉴스 기사 제목 추출 방법을 제안한다. 평가를 위해서는 자동으로 군집된 총 12개의 주제에 대한 다중 뉴스 기사 집합을 사용하였으며 전문 교육을 받은 연구원들이 정성평가를 진행하여 5점 만점 기준 평균 3.68점을 얻었다.
-
문서 요약 문제는 최근 심층 신경망을 활용하여 활발히 연구되고 있는 문제 중 하나이다. 많은 기존 연구들이 주로 시퀀스-투-시퀀스 모델을 활용하여 요약을 수행하고 있으나, 아직 양질의 요약을 생성하기에는 많은 문제점이 있다. 시퀀스-투-시퀀스 모델을 활용한 요약에서 가장 빈번히 나타나는 문제 중 하나는 요약문의 생성과정에서 단어나 구, 문장이 불필요하게 반복적으로 생성되는 것이다. 이를 해결하기 위해 다양한 연구가 이루어지고 있으며, 이들 대부분은 요약문의 생성 과정에서 정확한 정보를 주기 위해 모델에 여러 모듈을 추가하였다. 하지만 기존 연구들은 생성 단어가 정답 단어로 나올 확률을 최대화 하도록 학습되기 때문에, 생성하지 말아야 하는 단어에 대한 학습이 부족하여 반복 생성 문제를 해결하는 것에는 한계가 있다. 따라서 본 논문에서는 기존 요약 모델의 복잡도를 높이지 않고, 단어 생성 이력을 직접적으로 이용하여 반복 생성을 제어하는 모델을 제안한다. 제안한 모델은 학습할 때 생성 단계에서 이전에 생성한 단어가 이후에 다시 생성될 확률을 최소화하여 실제 모델이 생성한 단어가 반복 생성될 확률을 직접적으로 제어한다. 한국어 데이터를 이용하여 제안한 방법을 통해 요약문을 생성한 결과, 비교모델보다 단어 반복이 크게 줄어들어 양질의 요약을 생성하는 것을 확인할 수 있었다.
-
cQA(Community-based Question Answering) 시스템은 사용자들이 질문을 남기고 답변을 작성하는 시스템이다. cQA는 사용자의 편의를 위해 기존의 축적된 질문을 검색하거나 카테고리로 분류하는 기능을 제공한다. 질문의 길이가 길 경우 검색이나 카테고리 분류의 정확도가 떨어지는 한계가 있는데, 이를 극복하기 위해 cQA 질문을 요약하는 모델을 구축할 필요가 있다. 하지만 이러한 모델을 구축하려면 대량의 요약 데이터를 확보해야 하는 어려움이 존재한다. 본 논문에서는 이러한 어려움을 극복하기 위해 cQA의 질문 제목, 본문으로 데이터를 확보하고 필터링을 통해 요약 데이터 셋을 만들었다. 또한 본문의 대표 단어를 이용하여 추상 요약을 하기 위해 딥러닝 기반의 Pointer-generator model을 사용하였다. 실험 결과, 기존의 추출 요약 방식보다 딥러닝 기반의 추상 요약 방식의 성능이 더 좋았으며 Pointer-generator model이 보다 좋은 성능을 보였다.
-
뉴스 기반의 실시간 이슈 분석을 위해서는 실시간으로 생성되는 다중 뉴스 기사 집합을 입력으로 받아 점증적으로 군집화 하고, 각 군집별 정보를 자동으로 요약하는 기술이 필요하다. 기존에는 정적인 데이터 기반의 군집화와 요약 각각에 대한 연구는 활발히 진행되고 있지만, 실시간으로 입력되는 대량의 데이터를 위한 점증적인 군집화와 요약에 대한 연구는 매우 부족하다. 따라서 본 논문에서는 실시간으로 입력되는 대량의 뉴스 기사 집합을 분석하기 위한 점증적이고 계층적인 뉴스 군집화 및 다중 문서 요약 방법을 제안한다. 평가를 위해서 2016년 10월, 11월 두 달간의 실제 데이터를 사용 하였으며, 전문 교육을 받은 연구원들이 Precision at k 기반의 정성평가를 진행하였다. 그 결과, 자동으로 생성된 12개의 군집에서 군집 성능은 평균 66% (상위계층
$l_1$ : 82%, 하위계층$l_2$ : 43%), 요약 성능은 평균 92%를 얻었다. -
최근 대화 모델 학습에는 시퀀스-투-시퀀스 모델이 널리 활용되고 있다. 하지만 기본적인 시퀀스-투-시퀀스 모델로 학습한 대화 모델은 I don't know 문제와 사오정 문제를 내포한다. I don't know 문제는 입력 발화에 대해 안전하고 무미건조한 단편적인 대답을 많이 생성하는 문제이다. 사오정 문제는 입력 발화에 대해 적절한 응답을 생성했지만 입력 발화와 동일한 의미를 지니지만 어순, 어미 등의 변화가 있는 발화에는 적절한 응답을 생성하지 못하는 문제이다. 이전 연구에서 디노이징 메커니즘을 활용하여 각각의 문제를 완화하는 대화 모델들을 학습할 수 있음을 보였으나 하나의 모델에서 두 문제를 동시에 해결하지는 못하였다. 본 논문에서는 디노이징 메커니즘을 활용하여 각각의 문제에 강점을 지닌 디코더들을 학습하고 응답 생성 시 입력 발화에 따라 두 디코더를 적절하게 반영하여 언급한 문제 모두에 대해 강건한 응답을 생성할 수 있는 모델을 제안한다. 제안하는 방법의 우수성을 보이기 위해 9만 건의 한국어 대화 데이터로 실험을 수행하였다. 실험 결과 단일 문제를 해결하는 모델들과 비교하여 ROUGE F1 점수와 사람이 평가한 정성 평가에서 성능 향상을 보였다.
-
목적 지향 대화 시스템은 자연어 이해, 대화 관리자, 자연어 생성과 같은 세분화 모델들의 결합으로 이루어져있어 하위 모델에 대한 오류 전파에 취약하다. 이러한 문제점을 해결하기 위해 자연어 이해 모델과 대화 관리자를 하나의 네트워크로 구성하고 오류에 강건한 심층 Q 네트워크를 제안한다. 본 논문에서는 대화의 전체 흐름을 파악 할 수 있는 순환 신경망인 LSTM에 심층 Q 네트워크 적용한 심층 순환 Q 네트워크 기반 목적 지향 대화 시스템을 제안한다. 실험 결과, 제안한 심층 순환 Q 네트워크는 LSTM, 심층 Q 네트워크보다 각각 정밀도 1.0%p, 6.7%p 높은 성능을 보였다.
-
본 논문에서는 CNN Seq2Seq 구조를 이용해 한국어 대화 시스템을 개발하였다. 기존 Seq2Seq는 RNN 혹은 그 변형 네트워크에 데이터를 입력하고, 입력이 완료된 후의 은닉 층의 embedding에 기반해 출력열을 생성한다. 우리는 CNN Seq2Seq로 입력된 발화에 대해 출력 발화를 생성하는 대화 모델을 학습하였고, 그 성능을 측정하였다. CNN에 대해서는 약 12만 발화 쌍을 이용하여 학습하고 1만 발화 쌍으로 실험하였다. 평가 결과 제안 모델이 기존의 RNN 기반 모델에 비해 우수한 결과를 보였다.
-
최근 화두가 되고있는 지능형 개인 비서 시스템에서 자연어 이해(NLU) 시스템은 중요한 구성요소이다. 자연어 이해 시스템은 사용자의 발화로부터 대화의 도메인(domain), 의도(intent), 의미적 슬롯(semantic slot)을 분류하는 역할을 한다. 하지만 자연어 이해 시스템을 학습하기 위해서는 많은 양의 라벨링 된 데이터를 필요로 하며 새로운 도메인으로 시스템을 확장할 때, 새롭게 데이터 라벨링을 진행해야 하는 한계점이 존재한다. 이를 해결하기 위해 본 연구는 적대 학습 방법을 이용하여 풍부한 양으로 구성된 기존(source) 도메인의 데이터부터 적은 양으로 라벨링 된 데이터로 구성된 대상(target) 도메인을 위한 슬롯 채우기(slot filling) 모델 학습 방법을 제안한다. 실험 결과 적대 학습을 적용할 경우, 적대 학습을 적용하지 않은 경우 보다 높은 f-1 score를 나타냄을 확인하였다.
-
개체명 연결이란 주어진 문장에 출현한 단어를 위키피디아와 같은 지식 기반 상의 하나의 개체와 연결하여 특정 개체가 무엇인지 식별하여 모호성을 해결하는 작업이다. 본 연구에서는 위키피디아의 링크를 이용하여 개체 표현(Entity mention)과 학습 데이터, 지식 기반을 구축한다. 또한, Mention/Context 쌍의 표현과 Entity 표현의 코사인 유사도를 이용하여 Score를 구하고, 이를 통해 개체명 연결 문제를 랭킹 문제로 변환한다. 개체의 이름과 분류뿐만 아니라 개체의 설명, 개체 임베딩 등의 자질을 이용하여 모델을 확장하고 결과를 비교한다. 확장된 모델의 개체 링킹 성능은 89.63%의 정확도를 보였다.
-
개체명 인식은 문서에서 인명, 지명, 기관명 등의 고유한 의미를 나타내는 단위인 개체명을 추출하고, 추출된 개체명의 범주를 결정하는 작업이다. 최근 개체명 인식과 관련된 연구는 입력 데이터의 앞, 뒤를 고려하기 위한 Bi-RNNs와 출력 데이터 간의 전이 확률을 이용한 CRFs를 결합한 방식을 기반으로 다양한 변형의 심층학습 방법론이 제안되고 있다. 그러나 대부분의 연구는 입력 단위를 단어나 형태소로 사용하고 있으며, 성능 향상을 위해 띄어쓰기 정보, 개체명 사전 자질, 품사 분포 정보 등 다양한 정보를 필요로 한다는 어려움이 있다. 본 논문은 기본적인 학습 말뭉치에서 얻을 수 있는 문자 기반의 입력 정보와 Multi-Head Attention을 추가한 Bi-GRU/CRFs을 이용한 다국어 개체명 인식 방법을 제안한다. 한국어, 일본어, 중국어, 영어에 제안 모델을 적용한 결과 한국어와 일본어에서는 우수한 성능(한국어
$F_1$ 84.84%, 일본어$F_1$ 89.56%)을 보였다. 영어에서는$F_1$ 80.83%의 성능을 보였으며, 중국어는$F_1$ 21.05%로 가장 낮은 성능을 보였다. -
환자의 병력을 서술하는 임상문서에서 임상 개체명들은 그들 사이에 개체명이 아닌 단어들이 위치하기 때문에 거리상으로 서로 떨어져 있고, 임상 개체명인식에 많이 사용되는 조건부무작위장(conditional random fields; CRF) 모델은 Markov 속성을 따르기 때문에 서로 떨어져 있는 개체명 라벨 간의 전이 정보는 모델의 계산에서 무시된다. 본 논문에서는 라벨링 모델에 서로 떨어진 개체명 간 전이 관계를 표현하기 위하여 CRF 모델의 구조를 변경하는 방법론을 소개한다. 제안된 CRF 모델 디자인에서는 모델의 계산효율성을 빠르게 유지하기 위하여 Markov 속성을 유지하는 1차 모델 구조를 유지한다. 모델은 선행하는 개체명의 라벨 정보를 후행하는 개체명 엔터티에게 전달하기 위하여 선행 개체명의 라벨을 뒤 따르는 비개체명 라벨에 전이시키고 이를 통해 후행하는 개체명은 선행하는 개체명의 라벨 정보를 알 수 있게 된다. 라벨의 고차 전이 정보를 전달함에도 모델의 구조는 1차 전이 구조를 유지함으로 n차 구조의 모델보다 빠른 계산 속도를 유지할 수 있게 된다. 모델의 성능 평가를 위하여 서울대학교병원 류머티즘내과에서 퇴원한 환자들의 퇴원요약지에 병력과 관련된 엔터티가 태깅된 평가 데이터와 i2b2 2012/VA 임상자연어처리 shared task의 임상 개체명 추출 데이터를 사용하였고 기본 CRF 모델들(1차, 2차)과 비교하였다. 피처 조합에 따라 모델들을 평가한 결과 제안한 모델이 거의 모든 경우에서 기본 모델들에 비하여 F1-score의 성능을 향상시킴을 관찰할 수 있었다.
-
트위터는 최대 140자의 단문을 주고받는 소셜 네트워크 서비스이다. 트위터의 해시 태그는 주로 문장의 핵심 단어나 주요 토픽 등을 링크하게 되는데 본 논문에서는 이러한 정보를 이용하여 키워드 추출에 활용한다. 문장을 Character CNN, Bi-LSTM을 통해 문장 표현을 얻어내고 각 Span에서 이러한 문장 표현을 활용하여 Span 표현을 생성한다. Span 표현을 이용하여 각 Span에 대한 Score를 얻고 높은 점수의 Span을 이용하여 키워드를 추출한다.
-
본 논문에서는, 한국어 활용에 있어 중의성을 해소해 주고 심미적 효과를 줄 수 있는 개념인 띄어쓰기를, 교정이 아닌 입력 보조의 관점에서 접근한다. 사람들에게 자판을 통한 텍스트 입력이 언어활동의 보편적인 수단이 되면서 가독성을 포기하고서라도 편의를 택하는 경우가 증가하게 되었는데, 본 연구에서는 그러한 문장들의 전달력을 높여 줄 수 있는 자동 띄어쓰기 및 그 활용 방안을 제시한다. 전체 시스템은 dense word embedding과 딥 러닝 아키텍쳐를 활용하여 훈련되었으며, 사용된 코퍼스는 비표준어 및 비정형을 포함하는 대화체 문장으로 구성되어 user-generate된 대화형 문장 입력의 처리에 적합하다.
-
띄어쓰기와 문장 경계 인식은 그 성능에 따라 자연어 분석 단계에서 오류를 크게 전파하기 때문에 굉장히 중요한 문제로 인식되고 있지만 각각 서로 다른 자질을 사용하는 문제 때문에 각각 다른 모델을 사용해 순차적으로 해결하였다. 그러나 띄어쓰기와 문장 경계 인식은 완전히 다른 문제라고는 볼 수 없으며 두 모델의 순차적 수행은 앞선 모델의 오류가 다음 모델에 전파될 뿐만 아니라 시간 복잡도가 높아진다는 문제점이 있다. 본 논문에서는 띄어쓰기와 문장 경계 인식을 하나의 문제로 보고 한 번에 처리하는 다중 클래스 분류 시스템을 통해 시간 복잡도 문제를 해결하고 다중 손실 선형 결합을 사용하여 띄어쓰기와 문장 경계 인식이 서로 다른 자질을 사용하는 문제를 해결했다. 최종 모델은 띄어쓰기와 문장 경계 인식 기본 모델보다 각각 3.98%p, 0.34%p 증가한 성능을 보였다. 시간 복잡도 면에서도 단일 모델의 순차적 수행 시간보다 38.7% 감소한 수행 시간을 보였다.
-
Yoon, Ho;Kim, Chang-Hyun;Cheon, Min-Ah;Park, Ho-min;Namgoong, Young;Choi, Minseok;Kim, Jae-Hoon 189
자동 띄어쓰기란 컴퓨터를 사용하여 띄어쓰기가 수행되어 있지 않은 문장에 대해 띄어쓰기를 수행하는 것이다. 이는 자연언어처리 분야에서 형태소 분석 전에 수행되는 과정으로, 띄어쓰기에 오류가 발생할 경우, 형태소 분석이나 구문 분석 등에 영향을 주어 그 결과의 모호성을 높이기 때문에 매우 중요한 전처리 과정 중 하나이다. 본 논문에서는 기계학습의 방법 중 하나인 CRFs(Conditional Random Fields)를 이용하여 자동 띄어쓰기를 수행하고 심층 학습의 방법 중 하나인 양방향 LSTM/CRFs (Bidirectional Long Short Term Memory/CRFs)를 이용하여 자동 띄어쓰기를 수행한 뒤 각 모델의 성능을 비교하고 분석한다. CRFs 모델이 양방향 LSTM/CRFs모델보다 성능이 약간 더 높은 모습을 보였다. 따라서 소형 기기와 같은 환경에서는 CRF와 같은 모델을 적용하여 모델의 경량화 및 시간복잡도를 개선하는 것이 훨씬 더 효과적인 것으로 생각된다. -
차세대정보컴퓨팅 개발사업 협의회에서 주최하고 한국어 정보처리 원천기술 연구개발 사업단에서 주관하는 2018 차세정 언어처리 경진대회가 개최되었다. "한국어 자동 띄어쓰기"와 "한국어 복합명사 분해"의 두 태스크로 진행되었고 각각 4팀, 2팀이 참가하였다. 주최 측에서 제공한 데이터만을 활용하는 closed 트랙과 각 참가팀이 추가 데이터를 활용하는 open 트랙으로 구분하여 평가하였다.
-
음식과 맛집에 대한 사용자의 정보검색 니즈가 나날이 증가하면서 서비스 제공자가 정보 제공의 대상이 되는 맛집 상호명을 파악하는 것은 중요한 이슈다. 그러나 업종의 특성상 점포가 새로 생겨나는 주기는 매우 짧은 반면, 신규 점포의 서비스 등록 시점에는 시간적 차이가 존재하는 문제가 있다. 본 논문에서는 신규 상호명을 능동적으로 파악하기 위해 위치기반 서비스 로그에서 맛집 상호명을 추출하는 문자 기반의 딥러닝 모델 및 방법론을 제시한다. 자체 구축한 학습 데이터셋으로 실험한 결과, 제안하는 모델이 기존 기계학습 모델보다 높은 정확도로 상호명을 분류할 수 있음을 확인하였다. 또한, 사전 학습된 모델을 검색로그에 적용하여 신규 상호명 후보를 추출함으로써 향후 상호명 DB를 능동적으로 업데이트 할 수 있는 가능성을 타진하였다.
-
긴장이라는 측면은 의사소통을 하거나 글을 읽을 때 사람에게 항상 영향을 주고 있다. 긴장의 개념은 자연언어처리 분야에서 광범위한 의미로 사용되어 왔는데, 본 논문은 이런 개념 중 강연과 같은 한 방향 대화에서 화자의 말에 대하여 청중이 가지는 긴장도에 집중하여 이를 정량화하는 방법을 제안한다. 한 명의 저자에 의해 서술된 문서에 긴장도 개념을 적용함에 있어, 한 방향 대화에서의 긴장도를 정량화하는 본 연구는 긴장도 개념을 일반 문서에 적용할 때에 보다 용이하게 활용될 것으로 예상한다. 본 연구에서는 먼저 화자의 말에 대한 청중의 긴장도가 주석되어 있는 새로운 말뭉치를 구축하였다. 또한 문맥을 고려하여 긴장도를 예측할 수 있는 모델과 이에 따른 긴장도 분류 성능에 대한 실험 결과를 통하여 자동 긴장도 분류가 계산적으로 가능하다는 것을 보인다.
-
Choi, DongHyun;Park, IlNam;Lim, Jae-Soo;Baek, SeulYe;Lee, MiOk;Shin, Myeongcheol;Kim, EungGyun;Shin, Dong Ryeol 210
본 논문에서는 한국어 대화 엔진에서의 문장 분류 방법에 대해서 소개한다. 문장 분류시 말뭉치에서 관찰되지 않은 표현들을 포함한 입력 발화를 처리하기 위하여, 태깅되지 않은 뉴스 데이터로부터 일반적인 단어 의미 벡터들이 훈련 및 성능 평가되었고, 이를 문장 분류기에 적용하였다. 또한, 실 서비스에 적용 가능한 빠른 분류 속도를 유지함과 동시에 문제에 특화된 의미 벡터들을 학습하기 위하여, 기존에 사용되던 캐릭터 기반 의미 벡터 대신 도메인 특화 단어 의미 벡터의 사용이 제안되었다. 실험 결과, 자체 구축된 테스트 말뭉치에 대하여 본 논문에서 제안된 시스템은 문장 단위 정확률 96.88, 문장당 평균 실행 시간 12.68 msec을 기록하였다. -
다중 화자 대화 속 인물 식별이란 여러 등장인물이 나오는 대본에서 '그녀', '아버지' 등 인물을 지칭하는 명사 또는 명사구가 실제 어떤 인물을 나타내는지 파악하는 문제이다. 대본 자연어 데이터만을 입력으로 하는 대화 속 인물 식별 문제는 드라마 대본에 대해서 데이터가 구축 되었고 이를 기반으로 여러 연구가 진행되었다. 그러나, 사람도 다중 화자 대화의 문장만 보고는 인물을 지칭하는 명사 또는 명사구가 실제 어떤 인물인지 파악하기 어려운 경우가 있다. 이에 본 논문에서는 발화가 되는 시점의 영상 장면 정보를 추가적으로 활용하여 인물 식별의 성능을 높이는 방법을 제시한다. 또한 기존 대화 속 인물 식별 연구들은 미리 정의된 인물을 대상으로 분류하는 형태로 접근해왔다. 이는 학습에 사용되지 않았던 인물이 나오는 임의의 다른 드라마 대본이나 대화 등에 바로 적용될 수 없다. 이에 본 논문에서는 영상 정보는 활용하되, 한번 학습하면 임의의 대본에 적용될 수 있도록 사전 인물 정보를 사용하지 않는 상호참조해결 기반의 인물 식별 방법도 제시한다.
-
컴퓨터 키보드에서 한글 입력은 불편함을 감수하고 시프트키를 사용하여 입력한다. 한글 자모는 24자임에도 불구하고, 33자를 사용한다. 이 논문에서 물리적 기준을 어기지 않으며, 시프트타법을 사용하지 않는 입력 방법을 연구하였다. 구분자 방법, 변환자 방법, 제자리타법 등을 검토한다. 이 중 구분자 방법이 가장 타당성이 있다.
-
세계화가 진행되는 요즘, 외국어의 한글 표기 수요가 점차 증가하고 있다. 하지만 현대 한글은 11,172자 밖에 표현할 수 없는 반면 훈민정음은 약 399억 음절을 표현할 수 있다. 하지만 기존 컴퓨터 시스템에서의 훈민정음은 훈민정음 창제원리가 반영되어 있지 않아 약 399억 음절을 온전히 표현할 수 없다. 본 연구의 목적으로 약 399억 음절 입력이 가능한 윈도우용 정음 입력기를 구현하기 위해 기존 연구에 이어 정음 조합 자동 장치를 연구하고 구현하여 이식함에 있다.
-
세벌식 한글 글쇠배열은 두벌식보다 글쇠 수가 많이 필요하다는 단점이 있으나, 자음의 종류를 구분할 필요가 없고 고속 타자에 구조적으로 더 유리하다는 장점도 있다. 통상적인 '이어치기'를 넘어 일명 '모아치기'와 '동시치기'처럼 컴퓨터 속기에서 쓰이는 원리를 반영한 입력 로직을 구현할 수 있는데, 이를 위해서는 전용 오토마타를 설계해야 하며 글쇠가 순서대로 눌러진 것뿐만 아니라 각 글쇠들이 눌러진 간격, 눌러졌다가 떼어진 시점, 둘 이상의 글쇠가 동시에 눌러지는 상황에 대해서 고려할 필요가 있다. 본 연구에서는 글쇠가 눌린 간격의 변화를 주로 이용하여 세벌식 기반의 입력 방식에 적용 가능한 동시치기 로직을 제안하였다. 그리고 이것이 오타를 자동 보정함으로써 타자의 편의를 실제로 개선할 수 있음을 공병우 세벌식 글쇠배열을 기준으로 한 실험을 통해 제시하였다.
-
유니코드에 있는 3가지 한글코드를 훈민정음의 과학적 원리를 기준으로 정비하기 위하여 각각을 분석해서 평가한 다음 훈민정음 창제원리를 반영한 정음형 코드 즉 한글자모 코드가 나머지 음절표현을 포괄한다는 결과에 따라서 U+1100만 남기고 나머지 공간은 반납해야 한다는 정비 방향을 제안한다.
-
문맥 표현은 Recurrent neural network (RNN)에 기반한 언어 모델을 학습하여 얻은 여러 층의 히든 스테이트(hidden state)를 가중치 합(weighted sum)을 하여 얻어낸 벡터이다. Convolution neural network (CNN)를 이용하여 음절 표현을 학습하는 경우, 데이터 내에서 발생하는 미등록어를 처리할 수 있다. 본 논문에서는 음절 표현 CNN 기반의 포인터 네트워크와 문맥 표현을 함께 이용하는 방법을 제안하고, 이를 상호참조해결에 적용한다. 실험 결과, 질의응답 데이터셋에서 CoNLL F1 57.88%로 규칙기반에 비하여 11.09% 더 좋은 성능을 보였다.
-
최근 사용자 발화를 이해하고 그에 맞는 피드백을 생성할 수 있는 대화 시스템의 중요성이 증가하고 있다. 따라서 사용자 의도를 파악하기 위한 화행 분석은 대화 시스템의 필수적인 요소이다. 최근 많이 연구되는 심층 학습 기법은 모델이 데이터로부터 자질들을 스스로 추출한다는 장점이 있다. 발화 자체의 연속성과 화자간 상호 작용을 포착하기 위하여 CNN에 RNN을 결합한 CNN-RNN을 제안한다. 본 논문에서 제안한 계층 구조 어텐션 매커니즘 기반 CNN-RNN을 효과적으로 적용한 결과 워드 임베딩을 추가한 조건에서 가장 높은 성능인 91.72% 정확도를 얻었다.
-
상호참조해결은 자연언어 문서 내에서 등장하는 명사구 언급(mention)과 이에 선행하는 명사구 언급을 찾아 같은 개체인지 정의하는 문제이다. 특히, 지식베이스 확장에 있어 상호참조해결은 언급 후보에 대해 선행하는 개체의 언급이 있는지 판단해 지식트리플 획득에 도움을 준다. 영어권 상호참조해결에서는 F1 score 73%를 웃도는 좋은 성능을 내고 있으나, 평균 정밀도가 80%로 지식트리플 추출에 적용하기에는 무리가 있다. 따라서 본 논문에서는 한국어 문서에 대해 영어권 상호참조해결 모델에서 사용되었던 최신 모델인 Bi-LSTM 기반의 딥 러닝 기술을 구현하고 이에 더해 언급 후보 목록을 만들어 개체명 유형과 경계를 적용하였으며 품사형태를 붙인 토큰을 사용하였다. 실험 결과, 문자 임베딩(Character Embedding) 값을 사용한 경우 CoNLL F1-Score 63.25%를 기록하였고, 85.67%의 정밀도를 보였으며, 같은 모델에 문자 임베딩을 사용하지 않은 경우 CoNLL F1-Score 67.92%와 평균 정밀도 77.71%를 보였다.
-
화행 분석이란 자연어 발화를 통해 나타나는 화자의 의도를 파악하는 것을 말하며, 슬롯 필링이란 자연어 발화에서 도메인에 맞는 정보를 추출하기 위해 미리 정의되어진 슬롯에 대한 값을 찾는 것을 말한다. 최근 화행 분석과 슬롯 필링 연구는 딥 러닝 기반의 공동 학습을 이용하는 연구가 많이 이루어지고 있고 본 논문에서는 한국어 특허상담 도메인 대화 말뭉치를 이용하여 공동 학습 모델을 구축하고 개별적인 모델과 성능을 비교한다. 또한 추가적으로 공동 학습 모델에 주의집중 메커니즘을 적용하여 성능이 향상됨을 보인다. 최종적으로 주의집중 메커니즘 기반의 공동 학습 모델이 기준 모델과 비교하여 화행 분류와 슬롯 필링 성능이 각각 3.35%p, 0.54%p 향상되어 85.41%, 80.94%의 성능을 얻었다.
-
기계독해의 목표는 기계가 주어진 문맥을 이해하고 문맥에 대한 질문에 대답할 수 있도록 하는 것이다. 본 논문에서는 Multi-level Attention에 정보를 효율적으로 융합 수 있는 Fusion 함수를 결합하고, Answer module에Stochastic multi-step answer를 적용하여 SQuAD dev 데이터 셋에서 EM=78.63%, F1=86.36%의 성능을 보였다.
-
본 논문에서는 실생활에서 쓰이는 다양한 구조를 갖는 문서에 대해서도 자연어 질의응답이 가능한 모델을 만들고자, 그 첫걸음으로 표에 대해 자연어 질의응답이 가능한 End-to-End 인공신경망 모델 TabQA를 제안한다. TabQA는 기존 연구들과는 달리 표의 형식에 구애받지 않고 여러 가지 형태의 표를 처리할 수 있으며, 다양한 정보의 인코딩으로 풍부해진 셀의 feature를 통해, 표의 row와 column 객체를 직관적이고도 효과적으로 추상화한다. 우리는 본 연구의 결과를 검증하기 위해 다채로운 어휘를 가지는 표 데이터에 대한 질의응답 쌍을 자체적으로 생성하였으며, 이에 대해 단일 모델 EM 스코어 96.0%에 이르는 결과를 얻었다. 이로써 우리는 추후 더 넓은 범위의 양식이 있는 데이터에 대해서도 자연어로 질의응답 할 수 있는 가능성을 확인하였다.
-
본 연구에서는 질의-본문 간 문장 비교 정보가 reading comprehension task 의 성능 향상에 도움이 되는지를 확인해 보았다. 기존의 reading comprehension 방법론이 질의-본문 간 의미 비교정보를 활용하지만, 본문 전체를 대상으로 한 비교이기 때문에 문장 단위의 정보가 활용되지 못하는 단점이 있었다. 실험에 사용한 데이터는 대표적인 RC 데이터 중 하나인 NewsQA[5] 를 이용하였으며, 질의-본문 문장 간 비교를 통한 성능 향상의 잠재력을 확인하였다.
-
기계가 주어진 텍스트를 이해하고 추론하는 능력을 기계독해 능력이라 한다. 기계독해는 질의응답 태스크에 적용될 수 있는데 이것을 기계독해 질의응답이라 한다. 기계독해 질의응답은 주어진 질문과 문서를 이해하고 이를 기반으로 질문에 적합한 답을 출력하는 태스크이다. 본 논문에서는 구조화된 표 형식 데이터로부터 질문에 대한 답을 추론하는 TableQA 태스크를 소개하고,
$S^3-NET$ 을 이용하여 TableQA 문제를 해결할 것을 제안한다. 실험 결과, 본 논문에서 제안한 방법이 EM 96.36%, F1 97.04%로 우수한 성능을 보였다. -
본 논문에서는 machine reading 분야에서 기존의 long short-term memory (LSTM) 모델이 가지는 문제점을 해결하는 새로운 네트워크를 제안하고자 한다. 기존의 LSTM 모델은 크게 두가지 제한점을 가지는데, 그 중 첫째는 forget gate로 인해 잊혀진 중요한 문맥 정보들이 복원될 수 있는 방법이 없다는 것이다. 자연어에서 과거의 문맥 정보에 따라 현재의 단어의 의미가 크게 좌지우지될 수 있으므로 올바른 문장의 이해를 위해 필요한 과거 문맥의 정보 유지는 필수적이다. 또 다른 문제는 자연어는 그 자체로 단어들 간의 복잡한 구조를 통해 문장이 이루어지는 반면 기존의 시계열 모델들은 단어들 간의 관계를 추론할 수 있는 직접적인 방법을 가지고 있지 않다는 것이다. 본 논문에서는 최근 딥 러닝 분야에서 널리 쓰이는 attention mechanism과 본 논문이 제안하는 restore gate를 결합한 네트워크를 통해 상기 문제를 해결하고자 한다. 본 논문의 실험에서는 기존의 다른 시계열 모델들과 비교를 통해 제안한 모델의 우수성을 확인하였다.
-
논지가 높은 설득력을 갖기 위해서는 충분한 지지 근거가 필요하다. 논지 내의 주장을 논리적으로 지지할 수 있는 근거 자료 추출의 자동화는 자동 토론 시스템, 정책 투표에 대한 의사 결정 보조 등 여러 어플리케이션의 개발 및 상용화를 위해 필수적으로 해결되어야 한다. 하지만 웹문서로부터 지지 근거를 추출하는 시스템을 위해서는 다음과 같은 두 가지 연구가 선행되어야 하고, 이는 높은 성능의 시스템 구현을 어렵게 한다: 1) 논지의 주제와 직접적인 관련성은 낮지만 지지 근거로 사용될 수 있는 정보를 확보하기 위한 넓은 검색 범위, 2) 수집한 정보 내에서 논지의 주장을 명확하게 지지할 수 있는 근거를 식별할 수 있는 인지 능력. 본 연구는 높은 정밀도와 확장 가능성을 가진 지지 근거 추출을 위해 다음과 같은 단계적 지지 근거 추출 시스템을 제안한다: 1) TF-IDF 유사도 기반 관련 문서 선별, 2) 의미적 유사도를 통한 지지 근거 1차 추출, 3) 신경망 분류기를 통한 지지 근거 2차 추출. 제안하는 시스템의 유효성을 검증하기 위해 사설 4008개 내의 주장에 대해 웹 상에 있는 845675개의 뉴스에서 지지 근거를 추출하는 실험을 수행하였다. 주장과 지지 근거를 주석한 정보에 대하여 성능 평가를 진행한 결과 본 연구에서 제안한 단계적 시스템은 1,2차 추출 과정에서 각각 0.41, 0.70의 정밀도를 보였다. 이후 시스템이 추출한 지지 근거를 분석하여, 논지에 대한 적절한 이해를 바탕으로 한 지지 근거 추출이 가능하다는 것을 확인하였다.
-
한국어는 교착어적 특성이 강한 언어로, 교착어적 특성이 없는 영어 등의 언어와 달리 형태소의 수에 따라 조합 가능한 어절의 수가 매우 많으므로 어절 단위의 처리가 매우 어렵다. 따라서 어절을 더 작은 단위로 분해하는 전처리 단계가 요구되는데, 형태소 분석이 이를 위해 주로 사용되었다. 하지만 지도학습 방법을 이용한 형태소 분석 시스템은 다량의 학습 데이터가 요구되고, 비지도학습 방법을 이용한 형태소 분석은 성능에 큰 하락을 보인다. Byte Pair Encoding은 데이터를 압축하는 알고리즘으로, 이를 자연어처리 분야에 응용하면 비지도학습 방법으로 어절을 더 작은 단위로 분해할 수 있다. 본 연구에서는 한국어에 Byte Pair Encoding을 적용하는 두 가지 방법인 음절 단위 처리와 자모 단위 처리의 성능 및 특성을 정량적, 정성적으로 분석하는 방법을 제안하였다. 또한, 이 방법을 세종 말뭉치에 적용하여 각각의 알고리즘을 이용한 어절 분해를 실험하고, 그 결과를 어절 분해 정확도, 편향, 편차를 바탕으로 비교, 분석하였다.
-
기존의 Word2Vec이나 Glove 등의 단어 임베딩 모델은 문맥에 상관없이 단어의 Vector들이 고정된 Vector를 가지는 문제가 있다. ELMo는 훈련된 Bi-LSTM 모델을 통해서 문장마다 Word Embedding을 수행하기 때문에 문맥에 상관없이 고정된 Vector를 가지는 문제를 해결하였다. 본 논문에서는 한국어와 같이 형태적으로 복잡한 언어의 경우 수 많은 단어가 파생될 수 있어 단어 임베딩 벡터를 직접적으로 얻는 방식에는 한계가 있기 때문에 형태소의 표상들을 결합하여 단어 표상을 사용한 ELMo를 제안한다. ELMo 단어 임베딩을 Biaffine attention 파싱 모델에 적용 결과 UAS에서 91.39%, LAS에서 90.79%으로 기존의 성능보다 향상된 성능을 얻었다.
-
기존의 공간 관계 추출은 관계 속성 추출 후 적합한 개체와의 관계 형성이 불명확한 점과 한 개체가 다중관계에 속할 때 관계 형성이 불확실한 문제가 있다. 이를 해결하기 위하여 본 논문은 최근 개체명 관계 추출에서 사용하는 표 방법을 공간 관계 추출에 적용하였다. 기존 모델과 제안 모델을 비교하기 위하여 상한 성능을 측정하였으며, 그 결과 제안 모델이 더 우수함을 보였다.
-
딥러닝에서 층을 공유하여 작업에 따라 변하지 않는 정보를 사용하는 multi-task learning이 다양한 자연어 처리 문제에 훌륭하게 사용되었다. 그렇지만 우리가 아는 한 공유 공간의 상태와 성능과의 관계를 조사한 연구는 없었다. 본 연구에서는 공유 공간과 task 의존 공간의 자질의 수와 오염 정도가 성능에 미치는 영향도 조사하여 공유 공간과 성능 관계에 대해서 탐구한다. 이 결과는 multi-task를 진행하는 실험에서 공유 공간의 역할과 성능의 관계를 밝혀서 시스템의 성능 향상에 도움이 될 것이다.
-
본 논문에서는 한국어 수학 문장제 문제 자동 풀이를 위한 방법을 소개한다. 수학 문장제 문제란 수학적 관계가 언어와 숫자로 주어질 때, 문제에서 요구하는 정보를 도출하는 수학 문제로, 언어 의미 분석과 수학적 관계 추출이 요구된다. 본 논문에서는 이원 일차 연립 방정식을 포함한 514 문제의 영어 데이터셋을 번역해 한국어 문제를 확보하였다. 또한 한국어의 수학적 관계 표현과 언어 유형적 특성을 고려한 자질 추출을 제안하고, 템플릿 기반 Log-linear 모델이 정답 방정식을 분류하도록 학습하였다. 5겹 교차 검증을 실시한 결과, 영어 문제를 풀이한 선행 연구의 정답률 79.7% 대비 1%p 낮은 78.6%의 정답률을 보였다.
-
Choi, Min-Seok;Kim, Chang-Hyun;Cheon, Min-Ah;Park, Ho-Min;Namgoong, Young;Yoon, Ho;Kim, Jae-Hoon 316
복합명사는 둘 이상의 말이 결합된 명사를 말하며 문장에서 하나의 단어로 간주된다, 그러나 맞춤법 및 띄어쓰기 검사나 정보검색의 색인어 추출, 기계번역의 미등록어 추정 등의 분야에서는 복합명사를 구성하는 개별 단어를 확인할 필요가 있다. 이 과정을 복합명사 분해라고 한다. 복합명사를 분해하는 방법으로 크게 규칙 기반 방법, 통계 기반 방법 등이 있으며 본 논문에서는 규칙을 기반으로 최소한의 통계 정보를 이용하는 방법을 제안한다. 본 논문은 4개의 분해 규칙을 적용하여 분해 후보를 생성하고 분해 후보들 중에 우선순위를 정하여 최적 후보를 선택하는 방법을 제안한다. 기본 단어(명사)로 트라이(trie)를 구축하고 구축된 트라이를 이용하여 양방향 최장일치를 적용하고 음절 쌍의 통계정보를 이용해서 모호성을 제거한다. 성능을 평가하기 위해 70,000여 개의 명사 사전과 음절 쌍 통계정보를 구축하였고, 이를 바탕으로 복합명사를 분해하였으며, 분해 정확도는 단어 구성비를 반영하면 96.63%이다. 제안된 복합명사 분해 방법은 최소한의 데이터를 이용하여 복합명사 분해를 수행하였으며 트라이 자료구조를 사용해서 사전의 크기를 줄이고 사전의 검색 속도를 개선하였다. 그 결과로 임베디드 시스템과 같은 소형 기기의 환경에 적합한 복합명사 분해 시스템을 구현할 수 있었다. -
한국어는 교착어적 특성으로 인하여 어미와 조사가 매우 발달되어 있다. 그러므로 영어와 같은 굴절어를 중심으로 설계된 UD를 한국어에 적용하는 것에는 많은 어려움이 있다. 이를 해결하기 위해서 형태통사적 특성이 유사한 일본의 UD 적용 사례를 살펴보고 한국어의 UD 적용 양상과의 비교 분석을 통해서 한국어의 UD 적용 및 개선 방안을 고찰해 보고자 한다. 한국어와 일본어는 동일한 교착어로서 비슷한 특성을 지니고 있으나, 주석의 기본 단위 설정에서 차이를 보이면서 UD를 적용하는 양상이 달라졌음을 확인하였다. 일본어의 UD 주석에서 형태 분석 기본 단위인 단단위(Short unit word, 長單位)를 기본 구문 주석 단위로 하되 장단위(Long unit word, 短單位)와 문절 정보를 이용하는 것처럼, 한국어에서도 형태 분석 단위를 기준으로 의존 관계를 주석하는 방안에 대해서도 고려할 필요가 있다.
-
Universal Dependency 프로젝트는 여러 언어에 공통으로 적용할 수 있는 형태소 패턴과 구문 관계를 찾기 위한 연구를 진행하고 있으며, 점진적으로 많은 언어들이 참여하여 UD 가이드라인에 따라 말뭉치를 구축하고 시스템을 개발하고 있다. 한국어 UD 말뭉치도 구축되어서 공유되고 있지만 구축을 위한 상세한 가이드라인은 제공되지 않고 있다. 본 논문에서는 UD를 기반으로 한국어 구문분석 말뭉치를 구축할 때 논의되어야 할 요소들을 나열하고 예제를 통해서 설명하였다. 본 연구를 기반으로 한국어 구문분석 말뭉치 구축, 구문분석 시스템 개발에서 UD 가이드라인을 적용하는 논의가 시작되기를 기대한다.
-
본 논문에서는 기존에 구축되어 있는 구 구조 기반 구문 분석 태그셋을 Universal Dependency 관계 태그 셋으로 변환하는 방안에 대해 논의하였다. 범언어적으로 활용하기 위해 개발된 Universal Dependency의 관계 태그셋을 한국어에 적용할 때에는 범용 POS 태그셋인 UPOS뿐만 아니라 개별 언어의 특성을 반영하고 있는 XPOS를 반드시 참고해야만 한다. 본 연구에서는 Universal Dependency 관계 태그셋을 한국어 구문 분석 태그셋에 대응시키는 과정에서 생기는 문제점들을 '원시 말뭉치 처리 문제'와 '기구축 구문 태그 말뭉치 오류의 문제'로 나누어 지적하고, 이에 대한 해결책을 제시하였다.
-
기존의 의미역 결정은 먼저 구문 분석을 수행한 후에 해당 구문 분석 결과를 이용해 의미역 결정 테스크에 적용하는 파이프라인 방식으로 진행한다. 이러한 방식의 학습을 두 번 연이어 진행하기 때문에 시간이 오래 걸리고 또한 구문 파싱과 의미 파싱에 대해 서로 영향을 주지 못하는 단점이 존재하였다. 본 논문에서는 의존 파싱과 의미역 파싱을 동시에 진행하도록 전이 액션을 확장한 의존 파싱 & 의미역 결정 통합 모델을 제안하고 실험 결과, Korean Prop Bank 의미역 결정 데이터 셋에서 파이프라인 방식 전이 기반 방식을 사용한 모델보다 논항 인식 및 분류(AIC) 성능에서 F1 기준 0.14% 높은 결과을 보인다.
-
이 논문은 대화 시스템에서 질의를 이해하기 위해 딥 러닝 모델을 통해 추출된 자동 추출 자질을 이용하여 문장의 유사성을 분석하는 방법에 대해 기술한다. 문장 간 유사성을 분석하기 위한 자동 추출 자질로써, 문장 내 표현 순차적 정보를 반영하기 위한 RNN을 이용하여 생성한 문장 벡터와, 어순에 관계 없이 언어 모델을 학습하기 위한 CNN을 이용하여 생성한 문장 벡터를 사용한다. 이렇게 자동으로 추출된 문장 임베딩 자질은 금융서비스 대화에서 입력 문장을 분류하거나 문장 간 유사성을 분석하는데 이용된다. 유사성 분석 결과는 질의 문장과 관련된 FAQ 문장을 찾거나 답변 지식을 찾는데 활용된다.
-
본 논문에서는 한국어 프레임넷 분석기를 구축하기 위하여 한국어 프레임넷 데이터를 가공하여 공개하고, 한국어 프레임 분류 및 논항의 의미역 분류 문제를 해결하기 위한 방법을 제안한다. 프레임넷은 단어 단위가 아닌 단어들의 범위로 구성된 범위에 대해 어노테이션된 코퍼스라는 점에 착안하여, 어휘 및 논항의 내부 의미 정보와 외부 의미 정보, 그리고 프레임과 각 의미역들의 임베딩을 학습한 중첩 분할된 양방향 LSTM 모델을 사용하였다. 이를 통해 한국어 프레임 분류에서 72.48%, 논항의 의미역 분류에서 84.08%의 성능을 보였다. 또한 본 연구를 통해 한국어 프레임넷 데이터의 개선 방안을 논의한다.
-
FAQ 시스템은 주어진 질문과 가장 유사한 질의를 찾아 이에 대한 답을 제공하는 시스템이다. 질의 간의 유사도를 측정하기 위해 문장을 벡터로 표현하며 일반적으로 TFIDF, Okapi BM25와 같은 방법으로 계산한 단어 가중치 벡터를 이용하여 문장을 표현한다. 하지만 단어 가중치 벡터는 어휘적 정보를 표현하는데 유용한 반면 단어의 의미적인(semantic) 정보는 표현하기 어렵다. 본 논문에서는 이를 보완하고자 딥러닝을 이용한 문장 임베딩을 구축하고 단어 가중치 벡터와 문장 임베딩을 조합한 문장 유사도 계산 모델을 제안한다. 또한 문장 임베딩 구현 시 self-attention 기법을 적용하여 문장 내 중요한 부분에 가중치를 주었다. 실험 결과 제안하는 유사도 계산 모델은 비교 모델에 비해 모두 높은 성능을 보였고 self-attention을 적용한 실험에서는 추가적인 성능 향상이 있었다.
-
Visual Question Answering(VQA)은 주어진 이미지와 질문에 대해 알맞은 정답을 찾는 기술이다. VQA는 어린이 학습, 인공지능 비서 등 여러 분야에 활용할 수 있는 중요한 기술이다. 그러나 관련된 한국어 데이터를 확보하기 힘든 이유로 한국어를 이용한 연구는 이루어지지 못하고 있다. 본 논문에서는 기존 영어 VQA 데이터를 한글로 번역하여 한국어 VQA 데이터로 사용하며, 이미지 정보와 질문 정보를 적절히 조절할 수 있는 Gate를 한국어 VQA에 적용한다. 실험 결과, 본 논문에서 제안한 모델이 영어 및 한국어 VQA 데이터에서 다른 모델보다 더 좋은 성능을 보였다.
-
웹 또는 모바일 사용자는 고객 센터에 구축된 자주 묻는 질문을 이용하여 원하는 서비스를 제공받는다. 그러나 자주 묻는 질문은 사용자가 직접 핵심어를 입력하여 검색된 결과 중 필요한 정보를 찾아야 하는 어려움이 있다. 이러한 문제를 해결하기 위해 본 논문에서는 사용자 질의를 입력 받아 질의에 해당하는 클래스를 분류해주는 문장 분류 모델을 제안한다. 제안모델은 웹이나 모바일 환경의 오타나 맞춤법 오류에 대한 강건함을 위해 자소 단위 합성곱 신경망을 사용한다. 그리고 기계 번역 이외에도 자연어 처리 부분에서 큰 성능 향상을 보여주는 주의 집중 방법과 클래스 임베딩을 이용한 문장 분류 시스템을 사용한다. 457개의 클래스 분류와 769개의 클래스 분류에 대한 실험 결과 Micro F1 점수 기준 81.32%, 61.11%의 성능을 보였다.
-
판례는 재판에 대한 선례로, 법적 결정에 대한 근거가 되는 핵심 단서 중 하나이다. 본 연구에서는 채권회수를 예측하는 서비스 구축을 위한 단서를 추출하기 위해 채권 회수 판례를 수집하여 이를 분석한다. 먼저 채권 회수 판례에 대한 기초 분석을 위하여, 채권 회수 사례와 비회수 사례를 각 20건씩 수집하여 분석하였으며, 이후 대법원 및 법률 지식베이스의 채권 관련 판례 12,457건을 수집하고 채권 회수 여부에 따라 가공하였다. 채권 회수 사례와 비회수 사례를 분류하기 위한 판례 내의 패턴을 분석하여 레이블링하고, 이를 자동 분류할 수 있는 Bidirectional LSTM 기반 심층학습 모델을 구성하여 학습하였다. 채권 관련 판례 가공 기준에 따라 네 가지의 데이터 셋을 구성하였으며, 각 데이터셋을 8:2의 비율로 나누어 실험한 결과, 검증 데이터에 대하여 F1 점수 89.82%의 우수한 성능을 보였다.
-
스마트폰이 출시된 이후로 수많은 어플리케이션이 모바일로 출시되고 있다. 본 논문에서는 모바일 앱을 자동으로 분류하는 방법에 대하여 제안한다. 제안한 방법은 딥러닝 기반의 문서 임베딩 방법을 기반으로 효과적으로 앱을 분류한다. 본 논문에서는 또한 제안한 방법을 이용하여 독점도, 포화도, 인기순위를 기준으로 실제 마켓을 분석한다.
-
Dead Link의 노출 최소화는 웹 검색 서비스의 품질 유지에 있어 매우 중요하다. 따라서 색인 내 Soft 404 오류의 정확한 판별은 필수적이지만, 리다이렉션 정보에 의존하거나 텍스트 혹은 HTML 자질 만을 고려하는 기존 방법의 활용만으로는 판별 가능한 Soft 404 오류의 유형이 한정될 수 있다는 문제가 있다. 이에 본 연구에서는 보다 범용성이 높은 Soft 404 오류 판별 기술의 개발을 위해, 404 오류 안내 페이지 고유의 형태적 특성을 오류 판별에 사용할 것을 제안한다. 제안 방법은 오류 안내 문서의 형태적 특성을 이미지 인식 모형에 기반해 학습한 후 이를 Soft 404 오류 판별에 사용하며, 리다이렉션 등 특정 정보에 의존하는 기존 방법에 비해 보다 폭넓게 적용 가능하다는 장점이 있다. 실험에서 제안 방법은 87.6%의 정확률과 92.7%의 재현율을 기록하는 등 높은 인식 성능을 보였다.
-
딥러닝의 발달로 기계번역, 대화 시스템 등의 자연언어처리 분야가 크게 발전하였다. 딥러닝 모델의 성능을 향상시키기 위해서는 많은 데이터가 필요하다. 그러나 많은 데이터를 수집하기 위해서는 많은 시간과 노력이 소요된다. 본 연구에서는 이미지 생성 모델로 좋은 성능을 보이고 있는 생성적 적대 네트워크(Generative adverasarial network)를 문장 생성에 적용해본다. 본 연구에서는 긍/부정 조건에 따른 문장을 자동 생성하기 위해 SeqGAN 모델을 수정하여 사용한다. 그리고 분류기를 포함한 SeqGAN이 긍/부정 감성인식 학습데이터를 자동 생성할 수 있는지 실험한다. 실험을 수행한 결과, 분류기를 포함한 SeqGAN 모델이 생성한 문장과 학습데이터를 혼용하여 학습할 경우 실제 학습데이터만 학습 시킨 경우보다 좋은 정확도를 보였다.
-
본 연구는 SNS 텍스트에서 형태소 분석기로 분석되지 않는 비정규토큰 유형 중 고빈도로 나타나는 의존명사 내포 어형의 형태소를 인식할 수 있는 LGG 기반 패턴문법 사전 구축과 그 성능을 평가하는 것을 목표로 한다. SNS 텍스트에서는 기존의 정형화된 텍스트와 달리, 띄어쓰기 오류로 인한 미분석어가 매우 높은 빈도로 나타나는데, 특히 의존명사를 포함한 유형이 20% 이상을 차지하며 가장 빈번한 것으로 나타났다. 이에 본 연구에서는 의존명사를 내포한 비정규토큰의 띄어쓰기 오류 문제를 효과적으로 처리하기 위해, 부분 문법 그래프(Local Grammar Graph: LGG) 프레임에 기반한 패턴문법 사전을 구축하였다. 이를 SNS 코퍼스에 적용하여 성능을 평가한 결과, 정확률 91.28%, 재현율 89%, 조화 평균 90.13%의 성능을 통해 본 연구의 접근 방법론의 유용성과 구축 자원의 실효성을 입증하였다.
-
본 연구는 한국어 화장품 리뷰 코퍼스의 자질기반 감성 분석을 위하여, 이 도메인에서 실현되는 중요한 다단어 표현(MWE)의 유한상태 그래프 사전과 문법을 구축하는 방법론을 제시하고, 실제 구축된 사전과 문법의 성능을 평가하는 것을 목표로 한다. 본 연구에서는 자연어처리(NLP)에서 중요한 화두로 논의되어 온 MWE의 어휘-통사적 특징을 부분문법 그래프(LGG)로 형식화하였다. 화장품 리뷰 코퍼스에 DECO 한국어 전자사전을 적용하여 어휘 빈도 통계를 획득하고 이에 대한 언어학적 분석을 통해 극성 MWE(Polarity-MWE)와 화제 MWE(Topic MWE)의 전체 네 가지 하위 범주를 분류하였다. 또한 각 모듈간의 상호관계에 대한 어휘-통사적 속성을 반복적으로 적용하는 이중 증식(double-propagation)을 통해 자원을 확장하였다. 이 과정을 통해 구축된 대용량 MWE 유한그래프 사전 DECO-MWE의 성능을 테스트한 결과 각각 0.844(Pol-MWE), 0.742(Top-MWE)의 조화평균을 보였다. 이를 통해 본 연구에서 제안하는 MWE 언어자원 구축 방법론이 다양한 도메인에서 활용될 수 있고 향후 자질기반 감성 분석에 중요한 자원이 될 것임을 확인하였다.
-
Namgoong, Young;Kim, Chang-Hyun;Cheon, Min-Ah;Park, Ho-Min;Yoon, Ho;Choi, Minseok;Kim, Jae-Hoon 409
한국어는 문장 구성 요소들 간의 이동 및 생략이 자유롭다는 언어적 특성 때문에 구문 분석을 할 때 중의성이 증가한다. 뿐만 아니라 형태소 분석 단계에서 고도로 세분화된 분석 결과로 인해 한국어 구문 분석에 어려움을 더하고 있다. 이러한 문제점을 완화하기 위한 한 방안으로 형태소 분석과 구문 분석의 중간 단계에서 같은 역할을 수행하는 형태소들을 묶어 하나의 의미를 가진 부분적인 구문 요소(말덩이)를 형성하는 방법이 있다. 본 논문에서는 이러한 말덩이들에 대해 구체적인 정의를 내리고 그 단위 및 표지를 제시하여 향후 부분 구문 분석의 연구 및 수행에 활용될 수 있는 기준을 제시한다. -
한국어 형태소 분석은 많은 자연어 처리 분야에서 핵심적인 역할을 수행하고 있기 때문에 형태소를 분류하고 형태소에 알맞은 품사를 결정하는 것은 매우 중요하다. 기존의 형태소 분석은 [B, I]등의 태그를 포함된 품사를 음절 단위로 결정하는 방식으로 주로 연구되었다. 본 논문에서는 의존 파싱 분야에서 널리 활용되는 전이 기반 방식을 이용하여 딥러닝 모델을 통해 형태소 분석을 수행한다. 이에 나아가 학습 단계에서 정답으로부터 추출된 정보를 사용하고 평가 단계에서는 예측으로부터 추출된 정보를 사용함으로써 발생하는 차이점을 극복하기 위한 방법론인 동적 오라클을 적용하였다. 실험 결과, 세종 품사 부착 말뭉치 셋에 적용하여 형태소 F1 97.93%, 어절 정확도 96.70%로 기존의 성능을 더욱 향상시켰다.
-
The Universal Dependencies 프로젝트는 현재 71개 언어, 122개 Treebank로 이루어져 있으며, 병렬 언어 처리를 위해 여러 언어에 적용할 수 있는 형태적, 구문론적 특성을 찾는 것을 목표로 한다. 본고는 UD의 형태 태그셋인 Universal POS를 살펴보고, 한국어의 기존 형태 태그셋을 UPOS로 자동 변환하여 적용하는 방안을 제안한다. 영어와 같은 굴절어를 중심으로 구축된 UPOS 체계를 교착어에 속하는 한국어에 적용하기 위해서는 UPOS의 개별 표지와 21세기 세종계획 형태 주석 표지 결합체 간의 일대다 사상을 시도해야 한다.
-
지식 그래프는 많은 수의 개채와 이들 사이의 관계를 저장하고 있기 때문에 많은 연구에서 중요한 자원으로 활용된다. 최근에는 챗봇과 질의응답과 같은 연구에서 자연어 생성을 위한 연구에 활용되고 있다. 특히 자연어 생성에서 최근 발전 된 심층 신경망이 사용되고 있는데, 이러한 방식은 모델 학습을 위한 많은 양의 데이터가 필요하다. 즉, 심층신경망을 기반으로 지식 그래프에서 문장을 생성하기 위해서는 많은 트리플과 문장 쌍 데이터가 필요하지만 학습을 위해 사용하기엔 데이터가 부족하다는 문제가 있다. 따라서 본 논문에서는 데이터 부족 문제를 해결하기 위해 핵심어 시퀀스를 추출하여 학습하는 방법을 제안하고, 학습된 모델을 통해 트리플을 입력으로 하여 자연어 문장을 생성한다. 부족한 트리플과 문장 쌍 데이터를 대체하기 위해 핵심어 시퀀스를 추출하는 모듈을 사용해 핵심어 시퀀스와 문장 쌍 데이터를 생성하였고, 순환 신경망 기반의 인코더 - 디코더 모델을 사용해 자연어 문장을 생성하였다. 실험 결과, 핵심어 시퀀스와 문장 쌍 데이터를 이용해 학습된 모델을 이용해 트리플에서 자연어 문장 생성이 원활히 가능하며, 부족한 트리플과 문장 쌍 데이터를 대체하는데 효과적임을 밝혔다.
-
딥러닝 모델의 성능 향상을 위해 적은 데이터를 증가시킬 수 있는 연구들이 필요하다. 이미지의 경우 회전, 이동, 반전등의 연산으로 쉽게 데이터를 증가시킬 수 있지만 자연어는 그렇지 않다. 그러나 최근 딥러닝 생성 모델의 발전으로 기존 자연어 데이터를 생성 모델을 통해 양을 늘려 실험하는 연구들이 많이 시도되었다. 본 논문에서는 문장 데이터 생성을 위한 VAE, 문장 분류를 위한 CNN이 결합된 모델을 한국어 영화평 데이터에 적용하여 기존 모델보다 0.146% 높은 86.736%의 정확도를 기록하였다.
-
문체 변환 시스템을 학습하는 데 있어서 가장 큰 어려움 중 하나는 병렬 말뭉치가 부족하다는 것이다. 최근 대량의 비병렬 말뭉치만으로 문체 변환 문제를 해결하려는 많은 연구들이 발표되었지만, 아직까지도 원 문장의 정보 보존(Content preservation)과 문체 변환(Style transfer) 모두를 이루는 것이 쉽지 않은 상태이다. 특히 비교사 학습의 특성상 문체 변환과 동시에 정보를 보존하는 것이 매우 어렵다. Attention 기반의 Seq2seq 네트워크를 이용할 경우에는 과도하게 원문의 정보가 보존되어 문체 변환 능력이 떨어지기도 한다. 그리고 OOV(Out-Of-Vocabulary) 문제 또한 존재한다. 본 논문에서는 Attention 기반의 Seq2seq 네트워크를 이용하여 어절 단위의 정보 보존력을 최대한 높이면서도, 입력 문장에 효과적으로 Noise를 넣어 문체 변환 성능을 저해하는 과도한 정보 보존 현상을 막고 문체의 특성을 나타내는 어절들이 잘 변환되도록 할 뿐 아니라 OOV 문제도 줄일 수 있는 방법을 제안한다. 우리는 비교 실험을 통해 본 논문에서 제안한 방법들이 한국어 문장뿐 아니라 영어 문장에 대해서도 state-of-the-art 시스템들에 비해 향상된 성능을 보여준다는 사실을 확인하였다.
-
웹검색 결과의 품질 향상을 위해서는 질의의 정확한 매칭 뿐만이 아니라, 서로 같은 대상을 지칭하는 한글 문자열과 영문 문자열(예: 네이버-naver)의 매칭과 같은 유연한 매칭 또한 중요하다. 본 논문에서는 문장대문장 학습을 통해 영문 문자열을 한글 문자열로 음차변환하는 방법론을 제시한다. 또한 음차변환 결과로 얻어진 한글 문자열을 동일 영문 문자열의 다양한 음차변환 결과와 매칭시킬 수 있는 발음 유사성 기반 부분 매칭 방법론을 제시하고, 위키피디아의 리다이렉트 키워드를 활용하여 이들의 성능을 정량적으로 평가하였다. 이를 통해 본 논문은 문장대문장 학습 기반의 음차 변환 결과가 복잡한 문맥을 고려할 수 있으며, Damerau-Levenshtein 거리의 계산에 자모 유사도를 활용하여 기존에 비해 효과적으로 한글 키워드들 간의 부분매칭이 가능함을 보였다.
-
TTS(Text-to-Speech)는 문자열을 입력받아 그 문자열을 음성으로 변환하는 음성합성 기술이다. 그러나 실제 입력되는 문장에는 한글뿐만 아니라 영단어 및 숫자 등이 혼합되어 있다. 영단어는 대소문자에 따라 다르게 읽을 수 있으며, 단위로 사용될 때는 약어로 사용되는 것이므로, 알파벳 단위로 읽어서는 안 된다. 숫자 또한 함께 사용되는 단어에 따라 읽는 방식이 달라진다. 본 논문에서는 한글과 숫자 및 단위, 영단어가 혼합된 문장을 분류하고 이를 음역하는 시스템을 구성하며 word vector를 이용한 숫자 및 단위의 모호성 해소방법을 소개한다.
-
Park, Hosung;Lee, Donghyun;Lim, Minkyu;Kang, Yoseb;Oh, Junseok;Seo, Soonshin;Rim, Daniel;Kim, Ji-Hwan 453
본 논문은 한국어 자소를 인식 단위로 사용한 hybrid CTC-Attention 모델 기반 end-to-end speech recognition을 제안한다. End-to-end speech recognition은 기존에 사용된 DNN-HMM 기반 음향 모델과 N-gram 기반 언어 모델, WFST를 이용한 decoding network라는 여러 개의 모듈로 이루어진 과정을 하나의 DNN network를 통해 처리하는 방법을 말한다. 본 논문에서는 end-to-end 모델의 출력을 추정하기 위해 자소 단위의 출력구조를 사용한다. 자소 기반으로 네트워크를 구성하는 경우, 추정해야 하는 출력 파라미터의 개수가 11,172개에서 49개로 줄어들어 보다 효율적인 학습이 가능하다. 이를 구현하기 위해, end-to-end 학습에 주로 사용되는 DNN 네트워크 구조인 CTC와 Attention network 모델을 조합하여 end-to-end 모델을 구성하였다. 실험 결과, 음절 오류율 기준 10.05%의 성능을 보였다. -
최근 학술문헌이 급격하게 증가함에 따라, 학술문헌간의 연결성 및 메타데이터 추출 등의 핵심 자원으로서 활용할 수 있는 참고문헌에 대한 활용 연구가 진행되고 있다. 본 연구에서는 국내 학술지의 참고문헌이 가진 각 메타데이터를 자동적으로 인식하여 추출할 수 있는 참고문헌 메타데이터 인식에 대하여, 연속적 레이블링 방법론을 기반으로 접근한다. 심층학습 기술 중 연속적 레이블링에 우수한 성능을 보이고 있는 Bidirectional GRU-GRU CRF 모델을 기반으로 참고문헌 메타데이터 인식에 적용하였으며, 2010년 이후의 10종의 학술지내의 144,786건의 논문을 활용하여 추출한 169,668건의 참고문헌을 가공하여 실험하였다. 실험 결과, 실험집합에 대하여 F1 점수 97.21%의 우수한 성능을 보였다.
-
본 논문에서는 지식베이스 완성을 위한 새로운 모델, KBCNN을 소개한다. KBCNN 모델은 CNN을 기반으로 지식베이스의 개체들과 관계들 사이의 연관성을 포착한다. KBCNN에서 각 트리플 <주어 개체, 관계, 목적어 개체>는 3개의 열을 가진 행렬로 표현되며, 각각의 열은 트리플의 각 원소를 표현하는 임베딩 벡터다. 트리플을 나타내는 행렬은 여러 개의 필터를 가지고 있는 컨볼루션 레이어를 통과한 뒤, 하나의 특성 벡터로 합쳐진다. 이 특성 벡터를 가중치 행렬과 내적 하여 최종적으로 해당 트리플의 신뢰도를 출력하게 된다. 이 신뢰도를 바탕으로 트리플의 진실 여부를 가려낼 수 있다. 지식베이스 완성 연구에서 가장 많이 사용되는 데이터셋인 FB15k-237을 기반으로 한 실험을 통해 KBCNN 모델이 기존 임베딩 모델들보다 뛰어난 성능을 보이는 것을 확인하였다.
-
최근 제안된 순환 신경망 기반 Encoder-Decoder 모델은 기계번역에서 좋은 성능을 보인다. 하지만 이는 대량의 병렬 코퍼스를 전제로 하며 병렬 코퍼스가 소량일 경우 데이터 희소성 문제가 발생하며 번역의 품질은 다소 제한적이다. 본 논문에서는 기계번역의 이러한 문제를 해결하기 위하여 단일-언어(Monolingual) 데이터를 학습과정에 사용하였다. 즉, 역-번역(Back-translation)을 이용하여 단일-언어 데이터를 가상 병렬(Pseudo Parallel) 데이터로 변환하는 방식으로 기존 병렬 코퍼스를 확장하여 번역 모델을 학습시켰다. 역-번역 방법을 이용하여 영-한 번역 실험을 수행한 결과 +0.48 BLEU 점수의 성능 향상을 보였다.
-
Implementation of Ontology-based Analytics Service by Exploiting Massive Crime Investigation Records본 논문은 범죄 수사 기록 문서로부터 추출한 정보를 트리플로 구성하여 특정 분야의 온톨로지를 구축하고, 더 나아가 온톨로지 기반의 검색 서비스를 구현하는 일련의 과정을 설명한다. 특히 비정형 데이터로 부터 얻어낸 정보를 통해 온톨로지를 구축하고, 이를 토대로 실제 사용할 수 있는 레벨의 서비스를 구현하는 것이 특징이다. 서비스의 성능을 확인하기 위하여 사건 검색에 대한 정확도 측정 방법 중 하나인 Top-K 방식의 정확도 측정 실험을 수행하였으며, 실험 결과 완전 일치 실험에서는 약 93.52%, 유사 필드 활용 실험에서는 약 88.91%의 결과를 얻어낼 수 있었다.
-
본 논문에서는 스마트 스피커 환경에서 음악 재생 발화의 오류를 교정하는 음악 재생 발화 교정 모델을 제안한다. 음악 재생 발화에서 발생하는 다양한 오류 유형을 살펴보고, 음악 재생 발화 교정 모델에 대해 소개한다. 해당 모델은 후보 생성 모델과 교정 판별 모델로 이루어져 있다. 후보 생성 모델은 정답 후보들을 생성하고, 교정 판별 모델은 Random Forest를 사용하여 교정 여부를 판별한다. 제안하는 방법으로 음악 재생 발화에서 실제 사용자 만족도를 높일 수 있었다.
-
4차산업 혁명의 여파로 국내에서는 다양한 분야에 인공지능과 빅데이터 기술을 활용하여 이전에 시행 중인 다양한 서비스 분야에 기술적 접목과 보완을 시도하고 있다. 특히 금융권에서 자금을 빌린 기업들을 대상으로 여신 안정성을 확보하고 선제적인 대응을 위해 온라인 뉴스기사들과 SNS 데이터 등을 이용하여 부실가능성을 예측하고 실제 업무에 도입하려는 시도들이 국내 주요 은행들을 중심으로 활발히 진행 중이다. 우리는 국내의 국책은행에서 수행한 비정형 데이터 기반의 기업의 부실징후 예측 시스템 개발 과정에서 시도된 다양한 분석 방법과 결과 그리고 과정 중에 발생한 문제점들에 관해 기술하고 관련 이슈들에 관하여 다룬다. 결과적으로 본 논문은 레이블이 없는 대량의 기사들에 레이블을 달기 위한 자동 태거(tagger) 개발과 뉴스 기사 예측 결과로부터 부실 가능성을 예측하기 위한 모델 및 성능 면에서 기사 예측 정확도 92%(AUC 0.96) 및 부실 가능성 기업 예측에서도 정형 데이터 분석결과에 견줄만한 성과를 이루었고 이에 관해 보고한다.
-
복합명사는 둘 이상의 명사가 결합된 명사로, 한국어는 무한한 복합명사 생성이 가능하며 기계번역, 정보검색 등 다양한 분야에서 시스템의 정확도를 향상시키는데 중요한 역할을 한다. 본 논문은 리소스 확장을 이용한 사전 기반 복합명사 분해기[1]의 후속연구로 한국어 복합명사 분해기를 총 2단계에 걸쳐 분해하는 시스템을 제안한다. 먼저 대용량 복합명사 입출력쌍 사전을 구축한 후 1단계 분해를 진행하며, 1단계에서 분해가 실패한 경우 2단계에서 자체 구축한 Unigram사전을 기반으로 복합명사 분해를 진행한다. 실험결과 97.4%의 정확률이 나왔으며 기존의 리소스확장을 이용한 방법론보다 5.6%의 성능향상을 보였다.
-
본 논문은 한국관광공사에서 제공하는 Tour API 3.0 Open API에서 제공하는 데이터를 바탕으로 한다. Google에서 제공해 주는 TensorFlow를 통해서 인공 신경망 딥러닝 알고리즘과 가중치 알고리즘을 통해서 사용자 기호에 맞춰 정보를 추천해 주는 어플리케이션 '눈치코칭_여행딥러닝'의 설계 및 구현에 대하여 서술한다. 현재 순위알고리즘은 평균적으로 40%, 딥러닝 모델은 60%정확도를 보여, 딥러닝이 보다 좋은 성능을 보였다.
-
Neural machine translation (NMT) has recently achieved the state-of-the-art performance. However, it is reported failing in the word sense disambiguation (WSD) for several popular language pairs. In this paper, we explore the extent to which NMT systems are able to disambiguate the Korean homographs. Homographs, words with different meanings but the same written form, cause the word choice problems for NMT systems. Consistent with the popular language pairs, we discover that NMT systems fail to translate Korean homographs correctly. We provide a Korean word sense disambiguation tool-UTagger to use for improvement of NMT's translation quality. We conducted translation experiments using Korean-English and Korean-Vietnamese language pairs. The experimental results show that UTagger can significantly improve the translation quality of NMT in terms of the BLEU, TER, and DLRATIO evaluation metrics.
-
본 논문은 다양한 워드 임베딩 모델(word embedding model)들과 하이퍼 파라미터(hyper parameter)들을 조합하였을 때 특정 영역에 어떠한 성능을 보여주는지에 대한 연구이다. 3 가지의 워드 임베딩 모델인 Word2Vec, FastText, Glove의 차원(dimension)과 윈도우 사이즈(window size), 최소 횟수(min count)를 각기 달리하여 총 36개의 임베딩 벡터(embedding vector)를 만들었다. 각 임베딩 벡터를 Fast and Accurate Dependency Parser 모델에 적용하여 각 모들의 성능을 측정하였다. 모든 모델에서 차원이 높을수록 성능이 개선되었으며, FastText가 대부분의 경우에서 높은 성능을 내는 것을 알 수 있었다.
-
본 연구에서는 세종 구문 코퍼스를 의존 구문 코퍼스로 변환할 때 사용되는 중심어 전파(Head-Percolation) 규칙에 대하여 논의한다. 한국어는 중심어-후위 언어이기 때문에 의존 구문 트리를 구축할 때 지배소를 의존소 뒤에 배치시키는 것을 원칙으로 하였다. 그러나 의존 관계에 있는 단어 사이에 지배소를 앞쪽으로 설정하는 것이 더 자연스러운 경우가 있다. 본 연구에서는 지배소를 앞쪽으로 배치시키는 것을 허용하는 중심어 전파 규칙을 채택하여 의존 구문 코퍼스를 구축해 보고 중심어 전파 규칙이 구문 분석기의 성능에 어떤 영향을 미치는지 살펴본다. 실험 결과 지배소를 앞쪽으로 설정하는 것을 허용한 경우, 0.43%의 성능 저하가 있었으나 학습 코퍼스의 일관성을 유지한다면 성능 저하의 차이를 좀 더 줄일 수 있을 것이다.
-
의료정보 교환 국제 표준인 HL7의 처리를 위한 인터페이스 소프트웨어에서 다양한 버전 사이의 호환성 문제의 해결 방법으로 객체 지향적 구조에 기반한 HL7 파서(Parser)의 구조가 설계되었다. 그러나 수천개의 HL7 메시지 및 구성요소를 처리할 수 있는 HL7 파서를 직접 구현하기 위해서 많은 시간과 인력이 필요하다. 또한, 구현된 파서의 기능 변경 시 수천 개의 파일을 프로그래머가 직접 수정하는 방법은 매우 비효율적이다. 따라서 본 연구에서는 버전 상호 호환 가능한 HL7 파서의 설계에 따라 HL7 파서를 효과적인 구현할 수 있는 방법을 제안한다. 제안한 방법에 따라 HL7 파서를 구현하고, HL7 메시지의 버전 간 변환 테스트를 수행하여 개발한 파서의 효용성을 확인한다.
-
본 연구는 수많은 챗봇이 생성될 수 있는 챗봇 빌더 시스템에서 저비용 컴퓨팅 파워에서도 구동 가능한 가벼운 문장 분류 시스템을 제안하며, 미등록어 처리를 위해 워드 임베딩 기법인 GloVe를 이용하여 문장 벡터를 생성하고 이를 추가 자질로 사용하는 방법을 소개한다. 제안한 방법으로 자체 구축한 테스트 말뭉치를 이용하여 성능을 평가해본 결과 최대 93.06% 성능을 보였으며, 자체 보유한 CNN 모델과의 비교 평가 결과 성능은 2.5% 낮지만, 모델 학습 속도는 25배, 학습 시 메모리 사용량은 6배, 생성된 모델 파일 크기는 302배나 효율성 있음을 보였다.
-
초기 자연언어처리에 FNN(Feedforward Neural Network)을 적용한 연구들에 비해 LSTM(Long Short-Term Memory)은 현재 시점의 정보뿐만 아니라 이전 시점의 정보를 담고 있어 문장을 이루는 어절들, 어절을 이루는 형태소 등 순차적인(sequential) 데이터를 처리하는데 좋은 성능을 보인다. 본 논문에서는 스택과 버퍼에 있는 어절을 양방향 LSTM encoding을 이용한 representation으로 표현하여 전이기반 의존구문분석에 적용하여 현재 UAS 89.4%의 정확도를 보였고, 자질 추가 및 정제작업을 통해 성능이 개선될 것으로 보인다.
-
문서 자동 요약은 주요 단어 또는 문장을 추출하거나 문장을 생성하는 방식으로 요약한다. 최근 연구에서는 대량의 문서를 딥러닝하여 요약문 자체를 생성하는 방식으로 발전하고 있다. 추출 요약이나 생성 요약 모두 핵심 단어를 인식하는 것이 매우 중요하다. 학습할 때 각 단어가 문장에서 출현한 패턴으로부터 의미를 인식하고 단어를 선별하여 요약한다. 결국 기계학습에서는 학습 문서에 출현한 어휘만으로 요약을 한다. 따라서 학습 문서에 출현하지 않았던 어휘가 포함된 새로운 문서의 요약에서 기존 모델이 잘 작동하기 어려운 문제가 있다. 본 논문에서는 학습단계에서 출현하지 않은 단어까지도 중요성을 인식하고 요약문을 생성할 수 있는 신경망 모델을 제안하였다.
-
심층인공신경망을 이용한 대화 모델링 연구가 활발하게 진행되고 있다. 본 논문에서는 대화에서 발화의 감정과 화행을 분류하기 위해 멀티태스크(multitask) 학습을 이용한 End-to-End 시스템을 제안한다. 우리는 감정과 화행을 동시에 분류하는 시스템을 개발하기 위해 멀티태스크 학습을 수행한다. 또한 불균형 범주 분류를 위해 계단식분류(cascaded classification) 구조를 사용하였다. 일상대화 데이터셋을 사용하여 실험을 수행하였고 macro average precision으로 성능을 측정하여 감정 분류 60.43%, 화행 분류 74.29%를 각각 달성하였다. 이는 baseline 모델 대비 각각 29.00%, 1.54% 향상된 성능이다. 본 논문에서는 제안하는 구조를 이용하여, 발화의 감정 및 화행 분류가 End-to-End 방식으로 모델링 가능함을 보였다. 그리고, 두 분류 문제를 하나의 구조로 적절히 학습하기 위한 방법과 분류 문제에서의 범주 불균형 문제를 해결하기 위한 분류 방법을 제시하였다.
-
우리는 단어 임베딩에 외부지식을 내재할 수 있는 Ontofitting 방법을 제안한다. 이 방법은 retrofitting의한 방법으로 유의어, 반의어, 상위어, 하위어 정보를 단어 임베딩에 내재할 수 있다. 유의어와 반의어 정보를 내재하기 위해서 벡터의 각 유사도를 사용하였고 상하위어 정보를 내재하기 위해서 벡터의 길이 정보를 사용하였다. 유의어 사이에는 작은 각도를 가지고 반의어 사이에는 큰 각도를 가지게 된다. 하위어는 상위어보다 상대적으로 작은 길이를 가지게 된다. SimLex와 HyperLex로 실험하여 효과와 안정성을 검증하였다. 의미정보를 내재한 임베딩을 사용할 수 있다면 QA, 대화 등 응용에서 보다 좋은 성능을 보일 수 있을 것이다.
-
본 논문에서는 Sent2Vec을 이용한 문장 임베딩으로 구현한 유사 문장 판별 시스템을 제안한다. 또한 한국어 특성에 맞게 모델을 개선하여 성능을 향상시키는 방법을 소개한다. 고성능 라이브러리 구현과 제품화 가능한 수준의 완성도 높은 구현을 보였으며, 자체 구축한 평가셋으로 한국어 특성을 반영한 모델에 대한 P@1 평가 결과 Word2Vec CBOW에 비해 9.25%, Sent2Vec에 비해 1.93% 더 높은 성능을 보였다.
-
다양한 재난안전 유관기관으로부터 생산 및 관리되는 재난안전정보는 공유를 통해 재난관리업무를 보다 효율적이고 신속하게 수행할 수 있도록 도와준다. 그러나 재난안전정보 공유를 위해서는 우선 재난안전 분야에서 사용되는 용어의 표준화 및 체계화가 선행되어야 한다. 특히 다양한 분야에서 축척된 용어들을 모두 종합 검토하고 형상 관리하기 위해서는 별도의 구축도구가 필요하다. 본 논문에서는 재난안전정보 용어사전 구축도구를 통해 재난안전 분야의 용어를 입력하고 정제 및 검토하는 과정을 통하여 용어 표준화를 수행하고자 한다. 특히 본 논문에서 개발된 구축도구는 웹 기반 다중접속이 가능하도록 구현되었고, 하나의 표제어에 다양한 정의문이 할당되는 일대다 관계로 용어사전을 관리하고 있어 다양한 분야에서 혼재되어 있는 정의문들을 종합적으로 관리할 수 있다는 장점이 있다. 현재는 개발된 구축도구를 활용하여 재난안전정보 용어사전을 구축 중에 있으며, 차후 구축된 용어사전을 재난안전 분야 실무자 및 일반 이용자에게 제공하기 위한 활용도구 구축 연구가 추가적으로 진행될 계획이다.
-
바이오마커는 체내의 상태 및 변화를 파악할 수 있는 지표이다. 이는 암을 비롯한 다양한 질병에 대하여 진단하는데 활용도가 높은 것으로 알려져 있으나, 새로운 바이오마커를 찾아내기 위한 임상 실험은 많은 시간과 비용을 소비되며, 모든 바이오마커가 실제 질병을 진단하는데 유용하게 사용되는 것은 아니다. 따라서 본 연구에서는 자연어처리 기술을 활용해 바이오마커를 발굴할 때 요구되는 많은 시간과 비용을 줄이고자 한다. 이 때 다양한 의미를 가진 어휘들이 해당 질병과 연관성이 높은 것으로 나타나며, 이들을 분류하는 것은 매우 어렵다. 따라서 우리는 Word2Vec과 가우시안 혼합 모델을 사용하여 바이오마커를 분류하고자 한다. 실험 결과, 대다수의 바이오마커 어휘들이 하나의 군집에 나타나는 것을 확인할 수 있었다.
-
본 논문에서는 텍스트에서 개체(entity) 간 관계(relation) 추출 문제에서 의존구문트리를 이용하여 자질을 추출할 때 형용사구 내에 관계가 나타나는 경우의 성능을 향상시키는 방법을 제안한다. 일률적으로 의존구문트리의 최소공동조상(LCA: Least Common Ancestor)을 이용하는 일반적인 방법보다 형용사구가 나타날 때는 형용사구의 술어를 대신 이용하는 것이 더 좋은 자질이 된다는 것을 제안하고 로지스틱 회귀분석, SVM(linear), SVM(exponential kernel)을 이용한 실험들을 통해 그 효과를 확인하였다. 이는 트리커널을 이용한 것과 같이 의존구문트리의 최소공동조상이 주요한 역할을 하는 관계추출 모델들의 성능을 높일 수 있음을 보여 준다. 수행한 실험 과정을 통해 관계추출 데이터 셋에서 형용사구 내 관계를 포함하는 문장이 전체에서 차지하는 비율이 낮을 경우 생길 수 있는 문제를 추가적으로 얻을 수 있었다.
-
언어를 구사하는 능력은 연령별, 개인별로 차이가 있다. 이 능력은 평가 분류에 따라 수치적으로 평가될 수 있다. 그러나 수치로 평가하는 것 보다 비슷한 연령의 평균적인 능력과 비교를 통하여 능력을 평가하는 것이 일반적이다. 언어 병리학에서 평가를 하는 보편적인 방법은 언어 병리 전문가가 하는 것이다. 그러나 사람을 통한 평가 방법은 시간과 비용이 많이 소요될 뿐만 아니라 객관적이지 못한 평가라 할 수 있다. 따라서 이번 연구에서는 한국어 발화에 대한 분석을 자동화 하는 시스템을 제안한다.
-
순환 신경망(RNN) 기반의 Long Short-Term Memory(LSTM)는 자연어처리 분야에서 우수한 성능을 보이는 모델이다. 음성을 문자로 변환해주는 Speech to Text (STT)를 이용해 자막을 생성하고, 생성된 자막을 다른 언어로 동시에 번역을 해주는 서비스가 활발히 진행되고 있다. STT를 사용하여 자막을 추출하는 경우에는 마침표가 없이 전부 연결된 문장이 생성되기 때문에 정확한 번역이 불가능하다. 본 논문에서는 영어자막의 자동 번역 시, 정확도를 높이기 위해 텍스트를 문장으로 분할하여 마침표를 생성해주는 방법을 제안한다. 이 때, LSTM을 이용하여 데이터를 학습시킨 후 테스트한 결과 62.3%의 정확도로 마침표의 위치를 예측했다.
-
최근 신경망 번역 모델에 주의 집중 네트워크가 제안되어 기존의 기계 번역 모델인 규칙 기반 번역 모델, 통계적 번역 모델에 비해 높은 번역 성능을 보이고 있다. 그러나 주의 집중 네트워크가 잘못 모델링되는 경우 과소 번역 현상이 나타난다. 신경망 번역 모델에 커버리지 메커니즘을 추가하여 과소 번역 현상을 완화하는 연구가 진행되었으나 이는 모델의 구조를 변경해야하는 불편함이 있다. 본 논문에서는 신경망 번역 모델의 구조를 변경하지 않고 새로운 손실 함수를 정의하여 과소 번역 현상을 완화하는 방법을 제안한다. 한-영 번역 실험을 통해 제안한 주의 집중 네트워크의 정규화 방법이 커버리지 메커니즘의 목적을 효율적으로 달성함을 보인다.
-
한국어의 경어체는 종결어미에 따라 구분하고, 서로 다른 경어체는 각각 고유한 경어 강도가 있다. 경어체 간의 어체 변환은 규칙기반으로 진행되어 왔다. 본 논문은 어체 변환을 위한 규칙 정의의 번거로움을 줄이고 어체 변환 데이터만을 사용한 심층 학습 기반의 어체 변환 방법을 제안한다. 본 연구는 '해요체-합쇼체' 쌍의 병렬 데이터를 이용하여 Attention-based Sequence-to-Sequence 모델을 바탕으로 한 어체 변환 모델을 학습하였다. 해당 모델을 학습하고 실험하였을 때, 정확도 91%의 우수한 성과를 얻을 수 있었다.
-
본 논문에서는 한국 가요 학습 데이터를 노래 가사 마디 단위로 문자열을 역전시키는 형태로 변형하고 LSTM으로 학습하여, 마디 간의 문맥을 고려해 문자열을 생성하는 방법에 대해 제안한다. 그리고 이를 통해 특정 가요 가사와 유사하면서도 다른 가사를 생성하는 것도 가능하다. 문자열의 우측 끝에 위치하면서 마디 간의 문맥을 연결해 주는 서술어, 접속사와 같은 요소를 활용하기 위해 데이터를 변형하여 적용한다. 제안하는 방식으로 생성한 문자열이 단순히 문자열 데이터를 그대로 학습하여 생성하는 것보다 상대적으로 더 자연스러운 문맥으로 생성되는 것을 확인하였다.
-
본 논문에서는 한국어 형태소 분석 시스템을 제안하는데, 연구 목표는 오타 없는 문서를 대상으로 한 경우에도 높은 성능을 유지하면서, 동시에 오타가 있는 문서에서도 우수한 성능을 산출하는 것이다. 실험은 크게 두 종류로 나누어서 진행된다. 주 실험인 첫 번째 실험에서는, 자모 임베딩과 음절 임베딩을 결합(concatenate)한 벡터를 입력으로 Bidirectional LSTM CRFs을 수행함으로써, 세종말뭉치 대상으로 어절 정확도 97%, 그리고 1, 2, 5 어절마다 오타가 출현한 경우에서도 각각 80.09%, 87.53%, 92.49%의 높은 성능을 산출하였다. 추가 실험인 두 번째 실험에서는, 실생활에서 자주 발생하는 오타들을 집계하여 그 중에서 11가지 오타 유형을 선정 후, 각 유형에 대해 변환된 임베딩 벡터를 적용함으로써, 해당 오타를 포함한 문장에서 93.05%의 우수한 성능을 산출하였다.
-
본 논문에서는 SeqGAN 모델을 사용하여 한국어 시를 자동 생성해 보았다. SeqGAN 모델은 문장 생성을 위해 재귀 신경망과 강화 학습 알고리즘의 하나인 정책 그라디언트(Policy Gradient)와 몬테카를로 검색(Monte Carlo Search, MC) 기법을 생성기에 적용하였다. 시 문장을 자동 생성하기 위한 학습 데이터로는 사랑을 주제로 작성된 시를 사용하였다. SeqGAN 모델을 사용하여 자동 생성된 시는 동일한 구절이 여러번 반복되는 문제를 보였지만 한국어 텍스트 생성에 있어 SeqGAN 모델이 적용 가능함을 확인하였다.
-
사이버 공격 기법이 다양해지고 지능화됨에 따라 침해사고 발생이 증가하고 있으며, 그에 따른 피해도 확산되고 있다. 이에 따라 보안 기업들은 다양한 침해사고를 파악하고 빠르게 대처하기 위하여 위협정보를 정리한 인텔리전스 리포트를 배포하고 있다. 하지만 인텔리전스 리포트의 형식이 정형화되어 있지 않고 점점 증가하고 있어, 인텔리전스 리포트를 수작업을 통해 분류하기 힘들다는 문제점이 있다. 이와 같은 문제를 해결하기 위해 본 논문에서는 개체명 인식 시스템을 활용하여 비정형 인텔리전스 리포트에서 위협정보를 자동으로 탐지하고 추출할 수 있는 모델을 제안한다.
-
한국어 목적격 조사를 몽골어 격 어미로 번역할 때 한국어 목적격 조사가 몽골어의 여러 격 어미로 번역이 될 수 있는데, 기존의 연구들은 한가지 격 어미로만 번역해 정확한 의미를 전달하지 못하는 문제점이 있다. 이런 문제점을 개선하기 위하여 본 논문에서는 한국어 형태소 분석과 동시에 품사 및 동형이의어 태깅 시스템인 유태거(UTagger)를 기반으로 한국어 목적격 조사의 몽골어 격 어미 결정 방법을 제안한다. 제안한 방법의 성능을 검증하기 위하여 한국어기초사전에서 데이터를 추출하고 유태거와 비교 실험하였다. 실험 결과 유태거의 정확률은 72%인데 반해 제안한 방법은 94%로 제안한 방법이 22%p 더 우수한 결과를 보였다.
-
자동 띄어쓰기는 띄어쓰기가 되어있지 않은 문장에 대하여 띄어쓰기를 해주거나, 문장에 있는 잘못된 띄어쓰기를 교정하는 것을 말한다. 기존의 자동 띄어쓰기 연구는 주로 모든 음절을 붙인 후 새로 띄어쓰기 태그를 입력하는 방법을 사용하여 사용자가 입력한 올바른 띄어쓰기 정보를 활용하지 못하였다. 따라서 본 논문에서는 모두 붙여 쓴 문장에 공백을 넣어주는 띄어쓰기 삽입 모델과 사용자의 입력 정보를 이용하여 문장의 띄어쓰기 오류를 교정해주는 오류교정 모델이 결합된 통합모델을 제안한다. 제안된 모델은 에러율 10%일 때 F1-score가 98.85%까지 향상되었다.
-
본 논문은 일정 등록을 위한 대화 시스템 개발에 대한 연구를 수행하였다. 기계는 사용자가 요구하는 일정 등록, 일정 수정 및 일정 삭제 등 다양한 목적에 따라 이에 맞는 API를 호출하게 된다. DSCT 6가 제안한 방법을 활용하여 호출되는 API의 종류에 따라 사람과 기계와의 대화를 task 라 불리는 여러 종류의 소규모 목적 대화로 분류하였다. 그 후 분류된 목적 task를 위해 Memory Network 개발에 대한 연구를 수행하였다. 첫 번째로 분류된 task에 대한 실행 결과 75%, 두 번째 task 88%, 세 번째 task 89%, 마지막 모든 task를 합쳤을 때 90%의 성능을 확인할 수 있었다.
-
한국어 문장 분류는 주어진 문장의 내용에 따라 사전에 정의된 유한한 범주로 할당하는 과업이다. 그런데 분류 대상 문장이 띄어쓰기 오류를 포함하고 있을 경우 이는 분류 모델의 성능을 악화시킬 수 있다. 이에 한국어 텍스트 혹은 음성 발화 기반의 문장을 대상으로 분류 작업을 수행할 경우 띄어쓰기 오류로 인해 발생할 수 있는 분류 모델의 성능 저하 문제를 해결해 보고자 문장 압축 기반 학습 방식을 사용하였다. 학습된 모델의 성능을 한국어 영화 리뷰 데이터셋을 대상으로 실험한 결과 본 논문이 제안하는 문장 압축 기반 학습 방식이 baseline 모델에 비해 띄어쓰기 오류에 강건한 분류 성능을 보이는 것을 확인하였다.
-
본 논문에서는 음절 임베딩과 양방향 LSTM-CRF 모델을 이용한 한국어 문장 자동 띄어쓰기 시스템을 제안한다. 문장에 대한 자질 벡터 표현을 위해 문장을 구성하는 음절을 Unigram 및 Bigram으로 나누어 각 음절을 연속적인 벡터 공간에 표현하고, 양방향 LSTM을 이용하여 현재 자질에 양방향 자질들과 의존성을 부여한 새로운 자질 벡터를 생성한다. 이 새로운 자질 벡터는 전방향 신경망과 선형체인(Linear-Chain) CRF를 이용하여 최적의 띄어쓰기 태그 열을 예측하고, 생성된 띄어쓰기 태그를 기반으로 문장 자동 띄어쓰기를 수행하였다. 문장 13,500개와 277,718개 어절로 이루어진 학습 데이터 집합과 문장 1,500개와 31,107개 어절로 이루어진 테스트 집합의 학습 및 평가 결과는 97.337%의 음절 띄어쓰기 태그 분류 정확도를 보였다.
-
한국어 의존 구문 분석(Dependency Parsing)은 문장 어절의 중심어(head)와 수식어(modifier)의 의존관계를 표현하는 자연어 분석 방법이다. 최근에는 이러한 의존 관계를 표현하기 위해 주의 집중 메커니즘(Attention Mechanism)과 LSTM(Long Short Term Memory)을 결합한 모델들이 높은 성능을 보이고 있다. 본 논문에서는 개선된 Biaffine Attention 의존 구문 분석 모델을 제안한다. 제안된 모델은 기존의 Biaffine Attention에서 의존성과 의존 관계를 결정하는 방법을 개선하였고, 한국어 의존 구문 분석을 위한 입력 열의 형태소 표상을 확장함으로써 기존의 모델보다 UAS(Unlabeled Attachment Score)가 0.15%p 더 높은 성능을 보였다.
-
KoNLTK는 한국어와 관련된 다양한 언어자원과 언어처리 도구들을 파이썬 플랫폼에서 하나의 인터페이스 환경에서 제공하기 위한 언어처리 플랫폼이다. 형태소 분석기, 개체명 인식기, 의존 구조 파서 등 기초 분석 도구들과 단어 벡터, 감정 분석 등 응용 도구들을 제공하여 한국어 텍스트 분석이 필요한 연구자들의 편의성을 증대시킬 수 있다.
-
본 연구는 심층학습 기법을 활용하여 양극 데이터에 대해 학습된 모델로부터 예측된 결과를 바탕으로 언어 장애 여부를 판단하고, 이를 바탕으로 효율적인 언어 치료를 수행할 수 있는 방법론을 제시한다. 발화자의 개별 발화에 대해 데이터화를 하여 합성곱 신경망 모델(CNN)을 학습한다. 이를 이용하여 발화자의 연령 집단을 예측하고 결과를 분석하여 발화자의 언어 연령 및 장애 여부를 판단을 할 수 있다.
-
본 연구에서는 한글 질의어를 이용하여 MathML이라는 마크업 언어 형태로 저장된 수식을 검색하는 수식 검색 시스템을 제안하는데, 마크업 형태 자체에 대한 임베딩과 수식을 한글화 한 후의 임베딩이라는 두 가지 서로 다른 임베딩 결과를 이용하여 검색 성능을 향상시키는 것을 목표로 한다. 최근 자연어 처리의 많은 과제에서 임베딩은 거의 필수적으로 사용되고 있는데, 본 실험을 통해 자연어 문서가 아닌 마크업 형태 수식을 대상으로도 임베딩 사용이 성능 개선에 효과가 있음을 확인할 수 있다. 검색 환경을 실제와 유사하게 설정하기 위하여, 본 실험에서 사용하는 데이터에는 실험을 위해 수기로 작성된 수식들 외에도 실제 웹에서 가져온 여러 분야의 수많은 수식들이 포함된다. Indri 시스템을 이용하여 검색 실험을 수행한 결과, 임베딩을 활용하여 수식을 확장한 경우 수식 확장 이전에 비해 MRR 기준 4.8%p의 성능 향상을 확인할 수 있었다.
-
최근 데이터의 형태는 점점 다양화되고 증가하고 있기 때문에 데이터의 체계적 분류 및 관리의 필요성이 증대되고 있다. 이러한 목적을 위하여 데이터에 대한 품질 평가는 중요한 요소가 된다. 최근 데이터는 기존의 정형화된 데이터보다 비정형 데이터가 대부분을 차지하고 있다. 그러나 기존의 데이터 품질 평가는 정형 데이터에 편중되어 왔다. 따라서 다양한 형태와 의미를 가지고 있는 비정형 데이터는 기존의 평가 기술로는 품질을 측정하기 어렵다. 이와 같은 문제로 본 논문은 텍스트기반의 비정형 데이터에 적용 가능한 영역별 평가 지표를 구축하고, 신문기사와 커뮤니티(질의응답)데이터를 사용하여 각 요소별 품질을 측정하여 그 결과에 대해서 고찰하였다.
-
한국어 학습에 대한 관심이 전 세계적으로 높아짐에 따라 한국어 학습을 위한 다양한 프로그램들이 등장하고 있다. 한국어가 모국어가 아닌 외국인들의 한국어 학습을 위해서는 단어 학습이 기초가 되어야 하며, 단어 학습에서는 다양한 예문들이 필수적이다. 기존의 학습 시스템에서는 말뭉치에 있는 문장들을 예문으로 제시하는 기능을 제공하지만, 이 경우 한정적이고 반복된 문장만을 제공하는 문제를 가진다. 본 논문에서는 사용자가 학습하고자 하는 단어를 입력하면 해당 단어 단어를 포함하는 한국어 문장을 자동 생성하여 제공하는 시스템을 제안한다. 시스템에서는 언어 모델의 제어가 비교적 쉬운 마르코프체인을 활용한다.
-
영단어를 음역 하는 방법으로 규칙 기반 방법, 통계 기반 방법, 최대 엔트로피 기반 방법 등이 연구되어 왔다. 본 연구에서는 최근 기계 번역에서 우수한 성능을 보인 Sequence-to-Sequence 모델을 영어-한글 음차 표기에 적용해보았다. 실험결과, 다른 방법에 비해 우수한 성능을 보였다.
-
최근 딥러닝(Deep Learning)기반 연구가 활발해짐에 따라 딥러닝 모델 기반의 대화 시스템 연구가 활성화되고 있다. 하지만 이러한 연구는 다량의 데이터를 기반으로 이루어지기 때문에 데이터 구축 연구의 필요성이 증가하고 있다. 기존에 공개된 대화 코퍼스는 대부분 영어로 이루어져있어 한국어 대화 시스템에는 적용하기 어렵다. 본 논문에서는 한국어 대화 코퍼스 구축을 위하여 식당예약 및 추천을 위한 한국어 대화를 수집하였으며, 총 498개의 대화를 수집하였다. 대화는 식당 예약 및 추천을 위한 12개의 정보를 수집할 수 있도록 구성하였다. 또한 데이터의 활용성을 높이기 위하여 데이터 후처리 작업으로 12개의 정보를 태깅작업을 하였다.
-
최근 소셜 커머스 데이터를 이용하여 상품에 대한 소비자들의 수요와 선호도 등을 조사하는 등의 감성분석 연구가 활발히 진행되고 있다. 본 연구에서는 Stacked Bi-LSTM-CRF 모델을 이용하여 한국어의 복합적인 형태로 이루어지는 감성표현에 대하여 어휘단위로 감성분석을 진행하고, 상품의 세부주제(특징, 관심키워드 등)를 추출하여 세부주제별 감성 분석을 할 수 있는 방법을 제안한다.
-
본 논문에서는 영어권에 비해 상대적으로 부족한 한국어 언어자원을 지속적으로 구축함으로써 한국어 문서로 구성된 시간정보 주석 말뭉치를 확보하고 이를 바탕으로 한국어 시간정보추출 시스템에 대한 연구를 수행한다. 말뭉치 구축 과정에서의 시간정보 주석 작업은 가이드라인을 숙지한 주석자들이 수작업으로 기록하고, 어떤 주석 결과에 대해 의견이 다른 경우에는 중재자가 주석자들과 함께 검토하며 합의점을 도출한다. 시간정보추출 시스템은 자연어 문장에 대한 형태소 분석결과를 이용하여 시간표현(TIMEX3), 시간관계와 연관된 사건(EVENT), 시간표현 및 사건들 간의 시간관계(TLINK)를 추출하는 단계로 이루어진다. 추출된 한국어 시간정보는 문서 내 공통된 개체에 대한 공간정보와 결합함으로써 시공간정보가 모두 반영된 SPOTL을 생성한다. 추후 실험을 통하여 제안시스템의 구체적인 시간정보추출 성능을 파악할 것이다.
-
고전적으로 이용되던 디렉터리 분류로는 원하는 정보를 빠르게 찾기 어려워지면서, 키워드 기반 검색 시스템이 정보 처리의 중심이 되고 있다. 본 논문에서는 개인용 컴퓨터에서의 빠른 자료 검색을 위한 키워드 기반 정보검색 시스템을 제안한다. 시스템에서는 동적 색인을 통하여 기존 시스템들보다 빠른 시간 내에 검색 결과를 제공한다. 내용 기반 검색과 다양한 포맷에 대한 문서 검색 기능을 포함하여 사용자에게 편리한 환경을 제공할 뿐만 아니라, 한글 문장이 포함된 문서에 대해서 원활한 검색을 제공하고자 한다. 성능 비교 검증을 수행한 결과 기존 시스템에 비해 보다 빠른 시간 내에 많은 문서를 탐지할 수 있음을 확인하였다.
-
화행(Speech-act)이란 어떤 목적을 달성하기 위해 발화를 통해 이루어지는 화자의 행위를 뜻하며, 화행 분석(Speech-act analysis)이란 주어진 발화의 화행을 결정하는 것을 뜻한다. 문장 유형과 양태는 화행의 일종으로, 문장 유형의 경우 화자의 기본적인 발화 의도에 따라 평서문, 명령문, 청유문, 의문문, 감탄문의 다섯 가지 유형으로 나눌 수 있고, 양태는 문장이 표현하는 명제나, 명제가 기술하는 상황에 대해서 화자가 갖는 의견이나 태도를 말한다. 본 논문에서는 종결어미와 보조용언으로부터 비교적 간단하게 추출 가능한 문장 유형과 양태 정보를 활용하여 대화체 발화문의 화행 분석 성능을 높이는 방법을 보인다. 본 논문에서 제안하는 모델은 합성곱 신경망(CNN)을 사용한 기본 모델에 비해 0.52%p 성능 향상을 보였다.
-
기계 독해는 기계가 주어진 본문을 이해하고 질문에 대한 정답을 본문 내에서 찾아내는 문제이다. 본 논문은 질문 유형을 추가하여 정답 선택에 도움을 주도록 설계하였다. 우리는 Person, Location, Date, Number, Why, How, What, Others와 같이 8개의 질문 유형을 나누고 이들이 본문의 중요 자질들과 Attention이 일어나도록 설계하였다. 제안 방법의 평가를 위해 SQuAD의 한국어 번역 데이터와 한국어 Wikipedia로 구축한 K-QuAD 데이터 셋으로 실험을 진행하였다. 제안한 모델의 실험 결과 부분 일치를 인정하여, EM 84.650%, F1 86.208%로 K-QuAD 제안 논문 실험인 BiDAF 모델보다 더 나은 성능을 얻었다.
-
본 논문에서는 CNN에서 클래스 활성화 맵과 원샷 러닝을 결합하여 트위터 분류를 위한 딥 러닝 모델을 제안한다. 클래스 활성화 맵은 트윗 분류에 대한 분류 주제와 연관된 핵심 어휘를 추출하고 강조 표시하도록 사용되었다. 특히 작은 학습 데이터 셋을 사용하여 다중 클래스 분류의 성능을 향상시키기 위해 원샷 러닝 방법을 적용한다. 제안하는 방법을 검증하기위해 TREC 2018 태스크의 사건 스트림(TREC-IS) 학습데이터를 사용하여 비교실험을 했다. 실험 결과에서 CNN 기본 모델의 정확도는 58.1%이고 제안 방법의 정확도는 69.6%로 성능이 향상됨을 보였다.
-
With the rapid development of e-commerce, many customers can now express their opinion on various kinds of product at discussion groups, merchant sites, social networks, etc. Discerning a consensus opinion about a product sold online is difficult due to more and more reviews become available on the internet. Opinion Mining, also known as Sentiment analysis, is the task of automatically detecting and understanding the sentimental expressions about a product from customer textual reviews. Recently, researchers have proposed various approaches for evaluation in sentiment mining by applying several techniques for document, sentence and aspect level. Aspect-based sentiment analysis is getting widely interesting of researchers; however, more complex algorithms are needed to address this issue precisely with larger corpora. This paper introduces an approach of knowledge representation for the task of analyzing product aspect rating. We focus on how to form the nature of sentiment representation from textual opinion by utilizing the representation learning methods which include word embedding and compositional vector models. Our experiment is performed on a dataset of reviews from electronic domain and the obtained result show that the proposed system achieved outstanding methods in previous studies.
-
인공지능 산업이 발달함에 따라 사용자의 특성에 맞게 상호작용하는 기술에 대한 수요도 증가하고 있다. 하지만 텍스트 스타일 변환의 경우 사용자 경험을 크게 향상시킬 수 있는 기술임에도 불구하고, 학습에 필요한 병렬 데이터가 부족하여 모델링과 성능 개선에 어려움을 겪고 있다. 이에 따라 본 논문에서는 비 병렬 데이터만으로 텍스트 스타일 변환이 가능한 선행 모델[1]을 기반으로, 한국어에 적합한 문장 표현 방식 및 성능 개선을 위한 임의 도메인 예측 기법이 적용된 모델을 제안한다.
-
온라인 게시판 글과 채팅창에서 주고받는 대화는 실제 사용되고 있는 구어체 특성이 잘 반영된 텍스트 코퍼스로 음성인식의 언어 모델 재료로 활용하기 좋은 학습 데이터이다. 하지만 온라인 특성상 노이즈가 많이 포함되어 있기 때문에 학습에 직접 활용하기가 어렵다. 본 논문에서는 사용자 입력오류가 다수 포함된 문장에서의 한글 오류 보정을 위한 sequence-to-sequence Denoising Autoencoder 모델을 제안한다.
-
본 논문에서는 제약기반 KBQA를 위한 질문분석 기술에 대해서 소개한다. 핵심개체와 속성에 대한 연결 모호성을 해소하기 위해서 세 종류의 제약정보 활용을 제안한다. 세 종류의 제약은 핵심개체에 기반한 제약, 의미정답유형에 기반한 제약, 속성단서에 기반한 제약이다. 제약을 위해서는 질문 내에서 핵심개체와 속성단서를 인식하여야 한다. 본 논문에서는 규칙과 휴리스틱에 기반한 핵심개체와 속성단서 인식 방법에 대해서 소개한다. 핵심개체와 속성단서 인식 실험은 구축된 229개의 질문을 대상으로 수행하였으며, 핵심개체와 속성단서가 모두 정확히 인식된 정확도(accuracy)가 57.21%이고, KBQA 대상질문에서는 71.08%를 보였다.
-
개체명 인식(Named Entity Recognition)은 주로 인명(PS), 지명(LC), 기관명(OG) 등의 개체를 인식하기 위한 방식으로 많이 사용되어왔다. 그 이유는 해당 개체들이 데이터에서 중요한 의미를 가진 키워드이기 때문이다. 그러나 다른 도메인이 달라진다면 그동안 사용된 개체보다 더욱 중요한 의미를 갖는 개체가 존재할 수 있다. 특히 정보보안 분야에서는 악의적으로 사용되는 위협정보가 문서 내에서 중요한 의미를 갖는다. 보안 문서는 해시값, 악성코드명, IP, 도메인/URL 등 위협정보에 중요한 단서가 될 수 있는 다양한 정보를 담고 있다. 본 논문에서는 정보보안 분야의 위협정보를 탐지할 수 있는 개체명 시스템 개발을 위해 4개의 클래스와 20가지 속성으로 정의한 구축 방식을 구축하고 그 구축 방식에 대해 제안한다.
-
의존 구문 분석은 문장 구조를 중심어와 수식어로 이루어진 의존 관계로 표현하는 방법이다. 표현 방식이 간단하고 자유 어순에 적합하기 때문에 한국어와 같이 어순이 자유롭고 문장 성분의 생략이 빈번한 언어에 적합한 것으로 알려져 있다. 본 논문에서는 한국어 의존 구문 분석 연구를 활성화하기 위해 개최된 2018 국어 정보 처리 시스템 경진대회에서 사용된 학습 및 평가 데이터를 간략히 소개하고, 각 참가자들이 제출한 시스템의 결과를 요약한다.
-
Dependency parsing is an important task in natural language processing whose results are used in many downstream tasks such as machine translation, information retrieval, relation extraction, question answering and many others. Most of the dependency parsing literature focuses on using end-to-end and sequence-to-sequence neural architectures as the core of the system. One such system, namely Biaffine dependency parser is explored in the current paper for effective dependency parsing of Korean language.
-
구문 분석은 문장을 구성하는 단어들 간의 관계를 알아내 문장의 구조를 분석하는 작업이다. 구문 분석은 구구조 분석과 의존 구문 분석으로 나누어지는데 한국어처럼 어순이 자유로운 언어는 의존 구문 분석이 적합하다. 최근 구문 분석은 심층 신경망을 적용한 방식이 중점적으로 연구되고 있으며, 포인터 네트워크를 사용하는 모델이 가장 좋은 성능을 보였다. 그러나 포인터 네트워크만으로 구문적인 정보를 학습하기에는 한계가 있다. 본 논문에서는 멀티헤드 어텐션을 함께 사용하여 포인터 네트워크만을 사용 했을 때보다 높은 성능(UAS 92.85%, LAS 90.65%)을 보였다.
-
의존 구문 분석은 자연어 문장에 포함된 단어들 간의 의존 관계를 분석하는 과제로 다양한 자연어 이해 과제에 요구되는 핵심 기술 중 하나이다. 본 연구에서는 단어와 문자 자질을 적용한 기존 Stack-Pointer Network의 인코더의 입력 단어 표상을 확장하여, 한국어를 비롯한 형태적으로 복잡한 언어(morphologically rich language)에 적합하도록 음절-태그 단위, 형태소 단위, 형태소 품사 정보 자질을 보강한 의존 구문 분석 모델을 제안한다. 실험 결과 제안하는 모델은 의존 구조로 변환된 세종 구문 분석 말뭉치에서 UAS 90.58%, LAS 88.35%의 성능을, 2018 국어 정보 처리 시스템 경진 대회 평가 데이터에서 UAS 84.69%, LAS 82.02%의 성능을 보였다. 더불어 제안하는 모델은 포함된 문장의 전체 길이가 긴 의존 관계, 의존소와 지배소의 거리가 먼 의존 관계, 의존소를 구성하는 형태소의 개수가 많은 의존 관계에서 기존 Stack-Pointer Network보다 향상된 성능을 보였다.
-
의존 구문 분석은 자연어 이해 영역의 대표적인 과제 중 하나이다. 본 논문에서는 한국어 의존 구분 분석의 성능 향상을 위해 Deep Bi-affine Network 와 스택 포인터 네트워크의 앙상블 모델을 제안한다. Bi-affine 모델은 그래프 기반 방식, 스택 포인터 네트워크의 경우 그래프 기반과 전이 기반의 장점을 모두 사용하는 모델로 서로 다른 모델의 앙상블을 통해 성능 향상을 기대할 수 있다. 두 모델 모두 한국어 어절의 특성을 고려한 자질을 사용하였으며 세종 의존 구문 분석 데이터에 대해 UAS 90.60 / LAS 88.26(Deep Bi-affine Network), UAS 92.17 / LAS 90.08(스택 포인터 네트워크) 성능을 얻었다. 두 모델에 대한 앙상블 기법 적용시 추가적인 성능 향상을 얻을 수 있었다.