Annual Conference on Human and Language Technology (한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리))
Human and Language Technology (SIGHLT)
- Annual
- /
- 2005-3053(pISSN)
Domain
- Information/Communication > Information Processing Theory
2016.10a
-
형태소 분석기는 많은 자연어 처리 영역에서 필수적인 언어 도구로 활용되기 때문에 형태소에 대한 품사를 결정하는 것은 매우 중요하다. 최근 음절 기반으로 형태소의 품사를 태깅하는 방법에 대한 연구들이 많이 진행되고 있다. 음절 단위 형태소 분석은 음절 단위로 분리된 형태소에 대해서 기계학습을 이용하여 분리된 음절 단위로 품사를 태깅하는 단계를 가진다. 본 논문에서는 기존의 CRF를 이용한 음절 단위 품사 태깅 방법을 개선하기 위해 bi-LSTM-CRFs를 이용한 방법을 제안한다. 또한, bi-LSTM-CRFs의 입력을 음절의 품사 분포 벡터를 이용해 확장함으로써 음절 단위 품사 태깅의 성능을 향상 시켰다.
-
Stack LSTM기반 의존 파싱은 전이 기반 파싱에서 스택과 버퍼의 내용을 Stack LSTM으로 인코딩하여 이들을 조합하여 파서 상태 벡터(parser state representation)를 유도해 낸후 다음 전이 액션을 결정하는 방식이다. Stack LSTM기반 의존 파싱에서는 버퍼 초기화를 위해 단어 표상 (word representation) 방식이 중요한데, 한국어와 같이 형태적으로 복잡한 언어 (morphologically rich language)의 경우에는 무수히 많은 단어가 파생될 수 있어 이들 언어에 대해 단어 임베딩 벡터를 직접적으로 얻는 방식에는 한계가 있다. 본 논문에서는 Stack LSTM 을 한국어 의존 파싱에 적용하기 위해 음절-태그과 형태소의 표상들을 결합 (hybrid)하여 단어 표상을 얻어내는 합성 방법을 제안한다. Sejong 테스트셋에서 실험 결과, 제안 단어 표상 방법은 음절-태그 및 형태소를 이용한 방법을 더욱 개선시켜 UAS 93.65% (Rigid평가셋에서는 90.44%)의 우수한 성능을 보여주었다.
-
본 논문은 문장에서의 어절 간 의존관계가 성립될 때 의존소와 지배소가 어떠한 관계를 가지는지 의존 관계명을 부착하는 모델을 제안한다. 국내에서 한국어 의존구문분석에 관한 연구가 활발히 진행되고 있지만 의존 관계만을 결과로 제시하고 의존 관계명을 제공하지 않는 경우가 많았다. 따라서 본 논문에서는 의존 경로(Dependency Path)와 음절의 의존 관계명 분포를 반영하는 음절 임베딩를 이용한 의존 관계명 부착 모델을 제안한다. 문장에서 나올 수 있는 최적의 입력 열인 의존 경로(Dependency Path)를 순차 레이블링에서 좋은 성능을 나타내고 있는 bidirectional LSTM-CRFs의 입력 값으로 사용하여 의존 관계명을 결정한다. 제안된 기법은 자질에 대한 많은 노력 없이 의존 경로에 따라 어절 및 음절 단어표상(word embedding)만을 사용하여 순차적으로 의존 관계명을 부착한다. 의존 경로를 사용하지 않고 전체 문장의 어절 순서를 바탕으로 자질을 추출하여 CRFs로 분석한 기존 모델보다 의존 경로를 사용했을 때 4.1%p의 성능향상을 얻었으며, 의존 관계명 분포를 반영하는 음절 임베딩을 사용한 bidirectional LSTM-CRFs는 의존 관계명 부착에 최고의 성능인 96.01%(5.21%p 개선)를 내었다.
-
Sequence-to-sequence 모델은 입력열을 길이가 다른 출력열로 변환하는 모델로, 단일 신경망 구조만을 사용하는 End-to-end 방식의 모델이다. 본 논문에서는 Sequence-to-sequence 모델을 한국어 구구조 구문 분석에 적용한다. 이를 위해 구구조 구문 트리를 괄호와 구문 태그 및 어절로 이루어진 출력열의 형태로 만들고 어절들을 단일 기호 'XX'로 치환하여 출력 단어 사전의 수를 줄였다. 그리고 최근 기계번역의 성능을 높이기 위해 연구된 Attention mechanism과 Input-feeding을 적용하였다. 실험 결과, 세종말뭉치의 구구조 구문 분석 데이터에 대해 기존의 연구보다 높은 F1 89.03%의 성능을 보였다.
-
한글 입력 방식은 글쇠배열과 더불어 추가적인 낱자들을 입력하기 위한 결합 규칙이라는 형태로 정의할 수 있다. 그런데 이 규칙을 토대로 입력 방식을 실제로 구현해 보면 겹낱자를 결합하거나 음절이 바뀌는 과정에서 모호성 같은 문제가 발생할 수 있다. 초성과 종성을 문맥에 따라 구분해야 하는 두벌식, 모바일 환경처럼 매우 적은 글쇠, 수십 종류의 낱자들을 조합해야 하는 옛한글이라는 조건이 더해지면 입력 방식을 기술하고 분석하는 난이도가 더욱 높아진다. 본 논문에서는 한글 낱자의 결합 규칙을 대결합과 소결합으로 구분해서 기술하는 체계를 제안하며, 이를 토대로 입력 방식의 예상 동작을 분석해 주는 프로그램을 소개하였다. 그리고 모바일용 삼성 천지인과 KT 나랏글 한글 입력 방식을 동일 프로그램으로 기술하고 분석한 결과를 제시하였다.
-
수사구조는 텍스트의 각 구성 성분이 맺고 있는 관계를 의미하며, 필자의 의도는 논리적인 구조를 통해서 독자에게 더 잘 전달될 수 있다. 따라서 독자의 인지적 효과를 극대화할 수 있도록 수사구조를 고려하여 단락과 문장 구조를 구성하는 것이 필요하다. 그럼에도 불구하고 지금까지 수사구조에 기초한 한국어 분류체계를 만들거나 주석 코퍼스를 설계하려는 시도가 없었다. 본 연구에서는 기존 수사구조 이론을 기반으로, 한국어 보도문 형식에 적합한 30개 유형의 분류체계를 정제하고 최소 담화 단위별로 태깅한 코퍼스를 구축하였다. 또한 구축한 코퍼스를 토대로 중심문장을 비롯한 문장 구조의 특징과 분포 비율, 신문기사의 장르적 특성 등을 살펴봄으로써 텍스트에서 응집성의 실현 양상과 구문상의 특징을 확인하였다. 본 연구는 한국어 담화 구문에 적합한 수사구조 분류체계를 설계하고 이를 이용한 주석 코퍼스를 최초로 구축하였다는 점에서 의의를 갖는다.
-
'형태소 깎는 노인'은 국어사 자료를 처리하는 고성능 자동 형태분석기의 개발이 난항을 겪고 있는 상황에서 수동으로 형태분석 작업을 하는 연구자들을 지원하기 위하여 개발된 형태분석 보조기이다. 인간과 기계의 분업을 통해 인간의 피로를 최대한 줄이고, 단순 반복 형태에 대해서는 정답을 확실하게 제안할 수 있다는 것이 특징이다. 국어사 자료에는 한국어 정보처리를 위해 필요한 어휘 사전이 없으므로, 문법형태소 사전을 만들어 이를 단서로 조사/어미부와 어간부를 구분하도록 하였다. 이를 통해 구축된 소규모 형태분석 말뭉치들이 장기적으로는 자동 형태분석기의 성능 개선에 일조할 수 있을 것으로 기대한다.
-
오늘날 폰트를 디자인하는데 주로 사용되는 외곽선 방식은 글자의 크기를 손쉽게 변경할 수 있으나 글자의 굵기나 스타일을 변화시키려면 다시 수작업을 통해서 디자인을 변경해야 한다. 이를 보완하기 위한 프로그래머블 폰트인 메타폰트는 매개변수를 사용하여 글자의 변화가 매우 용이하다. 하지만 메타폰트는 프로그래밍 언어이므로 메타폰트에 대한 선행학습이 필요하여 폰트 디자이너에게 사용되지 않았다. 따라서 본 논문에서는 폰트 디자이너에게 익숙한 외곽선 방식에 편집기를 제공하면서 글자의 스타일에 대한 변화를 메타폰트에서 처리하여 다양한 폰트를 파생할 수 있는 한글 외곽선 폰트 시스템을 제안한다. 이를 위하여 본 시스템에서는 외곽선 방식의 폰트를 제작할 수 있도록 하는 웹 외곽선 폰트 편집기를 구현하였으며 외곽선 방식의 폰트를 메타폰트로 변환하는 UFO2mf를 구현하였다. 본 논문에서 제안하는 폰트 시스템은 기존 외곽선 방식의 스타일 변화에 대한 수고를 덜어줄 수 있을 것으로 기대한다.
-
본 논문에서는 임상 의사 결정 지원을 위한 UMLS와 위키피디아를 이용하여 지식 정보를 추출하고 질병 중심 문서 클러스터와 단어 의미 표현을 이용하여 질의 확장 및 문서를 재순위화하는 방법을 제안한다. 질의로는 해당 환자가 겪고 있는 증상들이 주어진다. UMLS와 위키피디아를 사용하여 병명과 병과 관련된 증상, 검사 방법, 치료 방법 정보를 추출하고 의학 인과 관계를 구축한다. 또한, 위키피디아에 나타나는 의학 용어들에 대하여 단어의 효율적인 의미 추정 기법을 이용하여 질병 어휘의 의미 표현 벡터를 구축하고 임상 인과 관계를 이용하여 질병 중심 문서 클러스터를 구축한다. 추출한 의학 정보를 이용하여 질의와 관련된 병명을 추출한다. 이후 질의와 관련된 병명과 단어 의미 표현을 이용하여 확장 질의를 선택한다. 또한, 질병 중심 문서 클러스터를 이용하여 문서 재순위화를 진행한다. 제안 방법의 유효성을 검증하기 위해 TREC Clinical Decision Support(CDS) 2014, 2015 테스트 컬렉션에 대해 비교 평가한다.
-
본 논문에서는 Sequence-to-sequence 모델을 생성요약의 방법으로 한국어 문서요약에 적용하였으며, copy mechanism과 input feeding을 적용한 RNN search 모델을 사용하여 시스템의 성능을 높였다. 인터넷 신문기사를 수집하여 구축한 한국어 문서요약 데이터 셋(train set 30291 문서, development set 3786 문서, test set 3705문서)으로 실험한 결과, input feeding과 copy mechanism을 포함한 모델이 형태소 기준으로 ROUGE-1 35.92, ROUGE-2 15.37, ROUGE-L 29.45로 가장 높은 성능을 보였다.
-
문서의 의미 기반 처리를 위해서 문서의 내용을 대표하는 키워드를 추출하는 것은 정확성과 효율성 측면에서 매우 중요한 과정이다. 그러나 단일문서로부터 키워드를 추출해 내는 기존의 연구들은 정확도가 낮거나 한정된 분야에 대해서만 검증을 수행하여 결과를 신뢰하기 어려운 문제가 있었다. 따라서 본 연구에서는 정확하면서도 다양한 분야의 텍스트에 적용 가능한 키워드 추출 방법을 제시하고자 단어의 동시출현정보와 그래프 모델을 바탕으로 TextRank 알고리즘을 변형한 새로운 형태의 알고리즘을 동시에 적용하는 키워드 추출 기법을 제안하였다. 제안한 기법을 활용하여 성능평가를 진행한 결과 기존의 연구들보다 향상된 정확도를 얻을 수 있음을 확인하였다.
-
본 논문에서는 word2vec과 doc2vec을 함께 CNN에 적용한 문서 분류 방안을 제안한다. 먼저 어절, 형태소, WPM(Word Piece Model)을 각각 사용하여 생성한 토큰(token)으로 doc2vec을 활용하여 문서를 vector로 표현한 후, 초보적인 문서 분류에 적용한 결과 WPM이 분류율 79.5%가 되어 3가지 방법 중 최고 성능을 보였다. 다음으로 CNN의 입력자질로써 WPM을 이용하여 생성한 토큰을 활용한 word2vec을 범주 10개의 문서 분류에 사용한 실험과 doc2vec을 함께 사용한 실험을 수행하였다. 실험 결과 word2vec만을 활용하였을 때 86.89%의 분류율을 얻었고, doc2vec을 함께 적용한 결과 89.51%의 분류율을 얻었다. 따라서 제안한 모델을 통해서 분류율이 2.62% 향상됨을 확인하였다.
-
본 논문에서는 워드 임베딩과 유의어를 이용하여 세종 전자사전을 확장하는 방법을 제시한다. 세종 전자사전에 나타나지 않은 단어에 대해 의미 범주 할당의 시스템 성능은 32.19%이고, 확장한 의미 범주 할당의 시스템 성능은 51.14%의 성능을 보였다. 의미 범주가 할당되지 않은 새로운 단어에 대해서도 논문에서 제안한 방법으로 의미 범주를 할당하여 세종 전자사전의 의미 범주 단어 확장에 대해 도움이 됨을 증명하였다.
-
본 연구는 전문기관에서 생산되는 검증된 문서를 웹상의 수많은 검증되지 않은 문서에 자동 주석하여 신뢰도 향상 및 심화 정보를 자동으로 추가하는 시스템을 설계하는 것을 목표로 한다. 이를 위해 활용 가능한 시스템인 인공 신경 정리 증명계(neural theorem prover)가 대규모 말뭉치에 적용되지 않는다는 근본적인 문제를 해결하기 위해 내부 순환 모듈을 단어 임베딩 모듈로 교체하여 재구축 하였다. 학습 시간의 획기적인 감소를 입증하기 위해 국가암정보센터의 암 예방 및 실천에 대한 검증된 문서들에서 추출한 28,844개 명제를 위키피디아 암 관련 문서에서 추출한 7,844개 명제에 주석하는 사례를 통하여 기존의 시스템과 재구축한 시스템을 병렬 비교하였다. 동일한 환경에서 기존 시스템의 학습 시간이 553.8일로 추정된 것에 비해 재구축한 시스템은 93.1분 내로 학습이 완료되었다. 본 연구의 장점은 인공 신경 정리 증명계가 모듈화 가능한 비선형 시스템이기에 다른 선형 논리 및 자연언어 처리 모듈들과 병렬적으로 결합될 수 있음에도 현실 사례에 이를 적용 불가능하게 했던 학습 시간에 대한 문제를 해소했다는 점이다.
-
프레임넷 (FrameNet) 프로젝트는 버클리에서 1997년에 처음 제안했으며, 최근에는 다양한 언어적 특징을 반영하여 여러 국가에서 사용되고 있다. 하지만 문장의 프레임을 분석하는 것은 자연언어처리 전문가들이 많은 시간을 들여야 한다. 이 때문에, 한국어 프레임넷을 처음 만들 때는 충분한 훈련을 받은 번역가들이 영어 프레임넷의 문장들과 그 주석 정보들을 직접 번역하는 방법을 사용했다. 결과적으로 상대적으로 적은 비용이 들지만, 여전히 한 문장에 여러 번 등장하는 프레임 정보를 모두 번역하고 에러를 분석해야 했기에 많은 노력이 들어갔다. 본 연구에서는 일본어와 한국어의 언어적 유사성을 사용하여 비교적 적은 비용으로 한국어 프레임넷을 확장하는 방법을 제시한다. 또한 프레임넷에 친숙하지 않은 사용자가 더욱 쉽게 프레임 정보를 활용할 수 있도록 PubAnnotation 기술을 도입하고 "조사"라는 특성을 고려한 Valence pattern 분류를 통해 한국어 공개 프레임넷 사이트를 개선하였다.
-
개체명 연결이란 문장 내 어떤 단어를 특정 사물이나 사람, 장소, 개념 등으로 연결하는 작업이다. 과거에는 주로 연결 대상 단어 주변 문맥에서 자질 공학을 거쳐 입력을 만들고, 이를 이용해 SVM이나 Logistic Regression 혹은 유사도 계산, 그래프 기반 방법론 등으로 지도/비지도 학습하여 문제를 풀어왔다. 보통 개체명 연결 문제의 출력 부류(class)가 사물이나 사람 수만큼이나 매우 커서, 자질 희소성 문제를 겪을 수 있다. 본 논문에서는 이 문제에 구조적으로 더 적합하며 모형화 능력이 더 뛰어나다 여겨지는 딥러닝 기법을 적용하고자 한다. 다양한 딥러닝 모형을 이용한 실험 결과 LSTM과 Attention기법을 같이 사용했을 때 가장 좋은 품질을 보였다.
-
문자 기반 LSTM CRF는 개체명 인식에서 높은 인식을 보여주고 있는 LSTM-CRF 방식에서 미등록어 문제를 해결하기 위해 단어 단위의 임베딩 뿐만 아니라 단어를 구성하는 문자로부터 단어 임베딩을 합성해 내는 방식으로 기존의 LSTM CRF에서의 성능 향상을 가져왔다. 한편, 개체명 인식에서 어휘 사전은 성능 향상을 위한 외부 리소스원으로 활용하고 있는데 다양한 사전 매칭 방법이 파생될 수 있음에도 이들 자질들에 대한 비교 연구가 이루어지지 않았다. 본 논문에서는 개체명 인식을 위해 다양한 사전 매칭 자질들을 정의하고 이들을 LSTM-CRF의 입력 자질로 활용했을 때의 성능 비교 결과를 제시한다. 실험 결과 사전 자질이 추가된 LSTM-CRF는 ETRI 개체명 말뭉치의 학습데이터에서 F1 measure 기준 최대 89.34%의 성능까지 달성할 수 있었다.
-
하위범주화는 술어와 보어간의 의존 관계를 정의하는 언어정보로서 다의어 태깅이나 이 외에 자연어처리의 다양한 곳에 이용될 수 있다. 그러나 하위범주화에서 다루는 필수논항은 격조사로 표현되어 실제로 한국어에서 자주 나타나는 보조사는 여기에 포함되지 않는다. 이런 문제 때문에 하위범주화네 나타난 격조사만을 그대로 이용하려고 하면 재현율에 큰 문제가 발생하게 된다. 본 논문에서는 문장에서 격조사 대신 보조사가 사용되었을 때 하위범주화의 필수논항으로 인정할 수 있는 방법을 제시하고, 특히 보조사에 적용할 경우에 생기는 이점을 실험으로 증명한다.
-
개체명 인식이란 문서 내에서 인명, 기관명, 지명, 시간, 날짜 등 고유한 의미를 가지는 개체명을 추출하여 그 종류를 결정하는 것을 말한다. 최근 개체명 인식 연구에서는 bidirectional LSTM CRFs가 가장 우수한 성능을 보여주고 있다. 하지만 LSTM 기반의 딥 러닝 모델은 입력이 되는 단어 표상에 의존적이기 때문에 입력이 되는 단어 표상을 확장하는 방법에 대한 연구가 많이 진행되어지고 있다. 본 논문에서는 한국어 개체명 인식을 위하여 bidirectional LSTM CRFs모델을 사용하고, 그 입력으로 사용되는 단어 표상을 확장하기 위해 사전 학습된 단어 임베딩 벡터, 품사 임베딩 벡터, 그리고 음절 기반에서 확장된 단어 임베딩 벡터를 사용한다. 음절 기반에서 단어 기반 임베딩 벡터로 확장하기 위하여 bidirectional LSTM을 이용하고, 그 입력으로 학습 데이터에서 추출한 개체명 분포를 이용하였다. 그 결과 사전 학습된 단어 임베딩 벡터만 사용한 것보다 4.93%의 성능 향상을 보였다.
-
의미역은 자연어 문장의 서술어와 관련된 논항의 역할을 설명하는 것으로, 주어진 서술어에 대한 논항 인식(Argument Identification) 및 분류(Argument Labeling)의 과정을 거쳐 의미역 결정(Semantic Role Labeling)이 이루어진다. 이를 위해서는 격틀 사전을 이용한 방법이나 말뭉치를 이용한 지도 학습(Supervised Learning) 방법이 주를 이루고 있다. 이때, 격틀 사전 또는 의미역 주석 정보가 부착된 말뭉치를 구축하는 것은 필수적이지만, 이러한 노력을 최소화하기 위해 본 논문에서는 비모수적 베이지안 모델(Nonparametric Bayesian Model)을 기반으로 서술어에 가능한 의미역을 추론하는 비지도 학습(Unsupervised Learning)을 수행한다.
-
최근 사람과 컴퓨터가 대화를 하는 채팅시스템 연구가 활발해지고 있다. 컴퓨터가 사람의 말에 적절한 응답을 하기 위해선 그 의미를 분석할 필요가 있다. 발화에 대한 의미 분석의 기본이 되는 연구로 감정분석과 화행분석이 있다. 그러나 이 둘은 서로 밀접한 연관이 있음에도 불구하고 함께 분석하는 연구가 시도 되지 않았다. 본 연구에서는 Long Short-term Memory(LSTM)를 이용하여 대화체 문장의 감정과 화행, 서술자를 동시에 분석하는 통합 대화 분석모델을 제안한다. 사랑 도메인 데이터를 사용한 실험에서 제안 모델은 감정 58.08%, 화행 82.60%, 서술자 62.74%의 정확도(Accuracy)를 보였다.
-
본 논문에서서는 질의응답 시스템을 위한 자연언어 질의 이해를 위하여 프레임 시멘틱스 기반 의미 분석 방식을 제안한다. 지식베이스에 의존적인 질의 이해는 지식베이스의 불완전성에 의해 충분한 정보를 분석하지 못한다는 점에 착안하여, 질의의 술부-논항구조 및 그 의미에 대한 분석을 수행하여 자연언어 질의에서 나타난 정보들을 충분히 파악하고자 하였다. 본 시스템은 자연언어 질의를 입력으로 받아 이를 프레임 시멘틱스의 구조에 기반하여 기계가 읽을 수 있는 임의의 RDF 표현방식의 모형 쿼리를 생성한다.
-
문장유사도 분석은 문서 평가 자동화에 활용될 수 있는 중요한 기술이다. 최근 순환신경망을 이용한 인코더-디코더 언어 모델이 기계학습 분야에서 괄목할만한 성과를 거두고 있다. 본 논문에서는 한국어 형태 소임베딩 모델과 GRU(Gated Recurrent Unit)기반의 인코더를 제시하고, 이를 이용하여 언어모델을 한국어 위키피디아 말뭉치로부터 학습하고, 한국어 질의응답 시스템에서 질문에 대한 정답을 유추 할 수 있는 증거문장을 찾을 수 있도록 문장유사도를 측정하는 방법을 제시한다. 본 논문에 제시된 형태소임베딩 모델과 GRU 기반의 인코딩 모델을 이용하여 문장유사도 측정에 있어서, 기존 글자임베딩 방법에 비해 개선된 결과를 얻을 수 있었으며, 질의응답 시스템에서도 유용하게 활용될 수 있음을 알 수 있었다.
-
정보의 양이 빠르게 증가함으로 인해 필요한 정보만을 효율적으로 얻기 위한 질의응답 시스템의 중요도가 늘어나고 있다. 그 중에서도 질의 문장에서 주어와 관계를 추출하여 정답을 찾는 지식베이스 기반 질의응답 시스템이 활발히 연구되고 있다. 그러나 기존 지식베이스 기반 질의응답 시스템은 하나의 질의 문장만을 사용하므로 정보가 부족한 단점이 있다. 본 논문에서는 이러한 단점을 해결하고자 정보검색을 통해 질의와 유사한 문장을 찾고 Recurrent Neural Encoder-Decoder에 검색된 문장과 질의를 함께 활용하여 주어와 관계를 찾는 모델을 제안한다. bAbI SimpleQuestions v2 데이터를 이용한 실험에서 제안 모델은 질의만 사용하여 주어와 관계를 찾는 모델보다 좋은 성능(정확도 주어:33.2%, 관계:56.4%)을 보였다.
-
대화 시스템에서 사용자가 나타내는 발화에 내재된 감정을 분류하는 것은, 시스템이 적절한 응답과 서비스를 제공하는데 있어 매우 중요하다. 본 연구에서는 대화 내 감정 분류를 하는데 있어 직접적, 간접적으로 드러나는 감정 자질을 자동으로 학습하고 감정이 지속되는 대화 문맥을 효과적으로 반영하기 위해 CNN-LSTM 방식의 딥 뉴럴 네트워크 구조를 제안한다. 그리고 대량의 구어체 코퍼스를 이용한 사전 학습으로 데이터 부족 문제를 완화하였다. 실험 결과 제안하는 방법이 기존의 SVM이나, 단순한 RNN, CNN 네트워크 구조에 비해 전반전인 성능 향상을 보였고, 특히 감정이 있는 경우 더 잘 분류하는 것을 확인할 수 있었다.
-
본 논문에서는 Reified 트리플 추출을 위한 한국어 개방형 정보추출 방법을 제시한다. 시맨틱웹 분야에서 지식은 흔히 RDF 트리플 형태로 표현되지만, 자연언어문장은 복수개의 서술어와 논항간의 관계로 구성되어 있다. 이러한 이유로, 시맨틱웹의 대표적인 지식표현법인 트리플을 따름과 동시에 문장의 의존구조를 반영하여 복수개의 술어와 논항간의 관계를 지식화하는 새로운 개방형 정보추출 시스템이 필요하다. 본 논문에서는 문장 구조에 대한 일관성있는 변환을 고려한 새로운 개방형 정보추출 방법을 제안하며, 개체 중심의 지식과 사건중심의 지식을 함께 표현할 수 있는 Reified 트리플 추출방법을 제안한다. 본 논문에서 제안한 방법의 우수성과 실효성을 입증하기 위해 한국어 위키피디아 알찬글 본문을 대상으로 추출된 지식의 양과 정확도 측정 실험을 수행하였고, 본 논문에서 제안한 방식을 응용한 의사 SPARQL 질의 생성 모듈에 대해 소개한다.
-
멘션(mention)은 명사 또는 명사구를 중심어로 가지며, 수식어를 포함하여 어떤 의미를 정의하는 구(chunk)를 구성한다. 문장 내에서 멘션을 추출하는 것을 멘션탐지라 한다. 멘션들 중에서 서로 같은 의미의 멘션들을 찾아내는 것을 상호참조해결이라 한다. 포인터 네트워크는 RNN encoder-decoder 모델을 기반으로, 주어진 입력 열에 대응되는 위치를 출력 결과로 갖는 모델이다. 본 논문에서는 멘션탐지에 포인터 네트워크를 이용할 것을 제안한다. 멘션탐지에 포인터 네트워크를 적용하면 기존의 sequence labeling 문제로는 해결할 수 없었던 중첩된 멘션탐지 문제를 해결할 수 있다. 실험 결과, 본 논문에서 제안한 멘션탐지의 성능이 규칙기반 보다 8%이상 높은 F1 80.75%를 보였으며, 이를 이용한 상호참조해결 성능이 CoNLL F1 52.69%로 규칙기반 멘션탐지를 이용한 상호참조해결에 비하여 2.29% 더 좋은 성능을 보였다.
-
본 논문에서는 클러스터 간의 중복을 허용한 계층적 클러스터링(hierarchical clustering) 기법에 적합한 클러스터 간 유사도 평가방법(linkage metric)을 제안하였다. 클러스터 간 유사도 평가방법은 계층적 클러스터링에서 클러스터를 통합하거나 분해하는데 쓰이며 사용된 방법에 따라 클러스터링의 결과가 다르게 형성된다. 기존의 클러스터 간 유사도 평가방법인 single linkage, complete linkage, average linkage 중 single linkage와 complete linkage는 클러스터 간 중복이 허용된 환경에서 정확도가 낮은 문제점이 있고, average linkage는 정확도가 두 방법에 비해 높지만 계산 시간 소요가 크다는 단점이 있다. 따라서 본 논문에서는 기존의 average linkage를 개선하여 중복된 데이터에 의한 필요 계산량을 크게 줄임으로써 시간적 성능이 우수한 클러스터 간 유사도 평가방법을 제안하였다. 또한, 제안된 방법을 기존 방법들과 비교 실험하여 중복을 허용하는 계층적 클러스터링 환경에서 정확도는 비슷하거나 더 높고, average linkage에 비해 계산량이 감소됨을 확인하였다.
-
본 논문에서 제안하는 문맥의존 철자오류 교정은 통계 정보를 이용한 방법으로 통계적 언어처리에서 가장 널리 쓰이는 샤논(Shannon)이 발표한 노이지 채널 모형(noisy channel model)을 기반으로 한다. 선행연구에서 부족하였던 부분의 성능 향상을 위해 교정대상단어의 오류생성 및 통계 데이터의 저장 방식을 개선하여 Default 연산을 적용한 모델을 제안한다. 선행 연구의 모델은 교정대상단어의 오류생성 시 편집거리의 제약을 1로 하여 교정 실험을 하지만 제안한 모델은 같은 환경에서 더욱 높은 검출과 정확도를 보였으며, 오류단어의 편집거리(edit distance) 제약을 넓게 적용하더라도 신뢰도가 있는 검출과 교정을 보였다.
-
본 연구는 SNS 문서의 논쟁 유발성을 자동으로 감지하기 위한 연구이다. 논쟁 유발성 분류는 글의 주제와 문체, 뉘앙스 등 추상화된 자질로서 인지되기 때문에 단순히 n-gram을 보는 기존의 어휘적 자질을 이용한 문서 분류 기법으로 해결하기가 어렵다. 본 연구에서는 문서 전체에서 전역적으로 나타난 추상화된 자질을 학습하기 위해 2-phase CNN 기반 논쟁 유발성 판별 모델을 제안한다. SNS에서 수집한 글을 바탕으로 실험을 진행한 결과, 제안하는 모델은 기존의 문서 분류에서 가장 많이 사용된 SVM에 비해 월등한 성능 향상을, 단순한 CNN에 비해 상당한 성능 향상을 보였다.
-
대화형 시스템이 사람의 경청 기술을 모방할 수 있다면 대화 상대방과 더 효과적으로 상호작용 할 수 있을 것이다. 본 논문에서는 시스템이 경청 기술을 모방할 수 있도록 사용자의 발화를 기반으로 질문을 생성하는 것에 대해 연구하였다. 그리고 이러한 연구를 위해 필요한 데이터를 Image captioning과 Visual QA 데이터를 기반으로 생성하고 활용하는 방안에 대해 제안한다. 또한 이러한 데이터를 Attention 메커니즘을 적용한 Sequence to sequence 모델에 적용하여 질문을 생성하고, 생성된 질문의 질문 유형을 분석하였다. 마지막으로 사람이 작성한 질문과 모델의 질문 생성 결과 비교를 BLEU 점수를 이용하여 수행하였다.
-
Cheon, Min-Ah;Kim, Chang-Hyun;Kim, Jae-Hoon;Noh, Eun-Hee;Sung, Kyung-Hee;Song, Mi-Young;Park, Jong-Im;Kim, Yuhyang 181
최근 교육과정에서 학생들의 능력 평가는 단순 암기보다 학생들의 종합적인 사고력을 판단할 수 있는 서답형 문항을 늘리는 방향으로 변하고 있다. 그러나 서답형 문항의 경우 채점하는 데 시간과 비용이 많이 들고, 채점자의 주관에 따라 채점 결과의 일관성과 신뢰성을 보장하기 어렵다는 문제가 있다. 이런 점을 해결하기 위해 해외의 사례를 참고하여 국내에서도 서답형 문항에 자동채점 시스템을 적용하는 연구를 진행하고 있다. 본 논문에서는 2014년도에 개발된 '한국어 문장 수준 서답형 문항 자동채점 시스템'의 성능분석을 바탕으로 언어 처리 기능과 자동채점 성능을 개선한 2015년도 자동채점 시스템을 간략하게 소개하고, 각 자동채점 시스템의 성능을 비교 분석한다. 성능 분석 대상으로는 2014년도 국가수준 학업성취도평가의 서답형 문항을 사용했다. 실험 결과, 개선한 시스템의 평균 완전 일치도와 평균 정확률이 기존의 시스템보다 각각 9.4%p, 8.9%p 증가했다. 자동채점 시스템의 목적은 가능한 채점 시간을 단축하면서 채점 기준의 일관성과 신뢰성을 확보하는 데 있으므로, 보완한 2015년 자동채점 시스템의 성능이 향상되었다고 판단할 수 있다. -
Shin, Donghyok;Kim, Sairom;Cho, Donghee;Nguyen, Minh Dieu;Park, Soongang;Eo, Keonjoo;Nam, Jeesun 189
본 연구는 다국어 감성사전 및 감성주석 코퍼스 구축 프로젝트인 MUSE 프로젝트의 일환으로 한국어 감성사전을 구축하기 위해 대표적인 영어 감성사전인 SentiWordNet을 이용하여 한국어 감성사전을 구축하는 방법의 의의와 한계점을 검토하는 것을 목적으로 한다. 우선 영어 SentiWordNet의 117,659개의 어휘중에서 긍정/부정 0.5 스코어 이상의 어휘를 추출하여 구글 번역기를 이용해 자동 번역하는 작업을 실시하였다. 그 중에서 번역이 되지 않거나, 중복되는 경우를 제거하고, 언어학 전문가들의 수작업으로 분류해 낸 결과 3,665개의 감성어휘를 획득할 수 있었다. 그러나 이마저도 병명이나 순수 감성어휘로 보기 어려운 사례들이 상당수 포함되어 있어 실제 이를 코퍼스에 적용하여 감성어휘를 자동 판별했을 때에 맛집 코퍼스에서의 재현율(recall)이 긍정과 부정에서 각각 47.4%, 37.7%, IT 코퍼스에서 각각 55.2%, 32.4%에 불과하였다. 이와 더불어 F-measure의 경우, 맛집 코퍼스에서는 긍정과 부정의 값이 각각 62.3%, 38.5%였고, IT 코퍼스에서는 각각 65.5%, 44.6%의 낮은 수치를 보여주고 있어, SentiWordNet 기반의 감성사전은 감성사전으로서의 역할을 수행하기에 충분하지 않은 것으로 나타났다. 이를 통해 한국어 감성사전을 구축할 때에는 한국어의 언어적 속성을 고려한 체계적인 접근이 필요함을 역설하고, 현재 한국어 전자사전 DECO에 기반을 두어 보완 확장중인 SELEX 감성사전에 대해 소개한다. -
본 연구는 MUSE 감성 코퍼스를 활용하여 문장의 극성과 키워드의 극성이 얼마만큼 일치하고 일치하지 않은지를 분석함으로써 특히 문장의 극성과 키워드의 극성이 불일치하는 유형에 대한 연구의 필요성을 역설하고자 한다. 본 연구를 위하여 DICORA에서 구축한 MUSE 감성주석코퍼스 가운데 IT 리뷰글 도메인으로부터 긍정 1,257문장, 부정 1,935문장을, 맛집 리뷰글 도메인으로부터는 긍정 2,418문장, 부정 432문장을 추출하였다. UNITEX를 이용하여 LGG를 구축한 후 이를 위의 코퍼스에 적용하여 나타난 양상을 살펴 본 결과, 긍 부정 문장에서 반대 극성의 키워드가 실현된 경우는 두 도메인에서 약 4~16%의 비율로 나타났으며, 단일 키워드가 아닌 구나 문장 차원으로 극성이 표현된 경우는 두 도메인에서 약 25~40%의 비교적 높은 비율로 나타났음을 확인하였다. 이를 통해 키워드의 극성에 의존하기 보다는 문장과 키워드의 극성이 일치하지 않는 경우들, 가령 문장 전체의 극성을 전환시키는 극성전환장치(PSD)가 실현된 유형이나 문장 내 극성 어휘가 존재하지 않지만 구 또는 문장 차원의 극성이 표현되는 유형들에 대한 유의미한 연구가 수행되어야 비로소 신뢰할만한 오피니언 자동 분류 시스템의 구현이 가능하다는 것을 알 수 있다.
-
본 논문에서는 문서의 공기관계를 통해 추출된 문서의 특징을 이용하여 유사 보고서를 판별하는 시스템을 제안한다. 국가 R&D 보고서의 XML형식 파일에서 텍스트를 추출 후, 문장 단위로 나누어 각 문장의 공기 관계를 추출한다. 그 후 공기관계의 노드와 엣지를 문서에 추가하고, 노드로 사용된 단어만 남기고 나머지 단어는 제외한다. 그리고 이것을 문서의 특징으로 삼고 유사도 계산을 한다. 이 때, 유사도 계산은 코사인 유사도를 사용한다. 실험결과, 국가 R&D문서 유사도 계산에서 제안된 방법이 기존의 방법보다 높은 분류율을 보여주었다.
-
인간은 문서전체를 읽지 않고 대표적인 단어를 보는 것만으로 정치나 스포츠 등의 분야를 정확히 인지할 수 있다. 문서 전체는 물론 부분 텍스트(단락)에 출현하는 소수의 단어 정보에서 문서의 분야를 정확히 결정하기 위한 분야연상어의 구축은 중요한 연구과제이다. 미리 분야체계를 정의하고, 각 분야에 해당하는 문서를 인터넷이나 서적을 통해 수집한다. 본 논문은 수집 문서의 분야를 정확히 지시하는 분야연상어를 수집하는 방법을 제안한다. 문서의 분야결정 시점을 고려하여 분야연상어의 수준을 정하였다. 인도네시아어의 분야연상어 사전을 자동으로 구축하기 위해 먼저 한국어로 구축한 분야 연상 지식을 추출하는 방법을 제안한다.
-
현재 나오는 많은 음성 인식기가 대체로 높은 정확도를 가지고 있더라도, 음성 인식 오류는 여전히 빈번하게 발생한다. 음성 인식 오류는 관련 어플리케이션에 있어 많은 오동작의 원인이 되므로, 음성 인식 오류는 고쳐져야 한다. 본 논문에서는 Trie 기반 사전을 이용한 Guided Sequence Generation을 제안한다. 제안하는 모델은 목표 단어와 그 단어의 문맥을 Encoding하고, 그로부터 단어를 Character 단위로 Decoding하며 단어를 Generation한다. 올바른 단어를 생성하기 위하여, Generation 시에 Trie 기반 사전을 통해 유도한다. 실험을 위해 모델은 영어 TV 가이드 도메인의 말뭉치의 음성 인식 오류를 단순히 Simulation하여 만들어진 말뭉치로부터 훈련되고, 같은 도메인의 음성 인식 문장과 결과로 이루어진 병렬 말뭉치에서 성능을 평가하였다. Guided Generation은 Unguided Generation에 비해 14.9% 정도의 오류를 줄였다.
-
본 논문은 형태소 분석 및 품사 태깅을 위해 seq2seq 주의집중 모델을 이용하는 접근 방법에 대하여 기술한다. seq2seq 모델은 인코더와 디코더로 분할되어 있고, 일반적으로 RNN(recurrent neural network)를 기반으로 한다. 형태소 분석 및 품사 태깅을 위해 seq2seq 모델의 학습 단계에서 음절 시퀀스는 인코더의 입력으로, 각 음절에 해당하는 품사 태깅 시퀀스는 디코더의 출력으로 사용된다. 여기서 음절 시퀀스와 품사 태깅 시퀀스의 대응관계는 주의집중(attention) 모델을 통해 접근하게 된다. 본 연구는 사전 정보나 자질 정보와 같은 추가적 리소스를 배제한 end-to-end 접근 방법의 실험 결과를 제시한다. 또한, 디코딩 단계에서 빔(beam) 서치와 같은 추가적 프로세스를 배제하는 접근 방법을 취한다.
-
본 논문에서는 격틀과 워드 임베딩을 활용한 유사도 기반 대화 모델링을 제안한다. 기존의 유사도 기반 대화 모델링 방법은 형태소, 형태소 표지, 개체명, 토픽 자질, 핵심단어 등을 대화 말뭉치에서 추출하여 BOW(Bag Of Words) 자질로 사용하였기 때문에 입력된 사용자 발화에 포함된 단어들의 주어, 목적어와 같은 문장성분들의 위치적 역할을 반영할 수 가 없다. 또한, 의미적으로 유사하지만 다른 형태소를 가지는 문장 성분들의 경우 유사도 계산에 반영되지 않는 형태소 불일치 문제가 존재한다. 이러한 문제점을 해결하기 위해서, 위치적 정보를 반영하기 위한 문장성분 기반의 격틀과 형태소 불일치 문제를 해결하기 위한 워드임베딩을 활용하여 개선된 유사도 기반 대화 모델링을 제안한다. 개선된 유사도 기반 대화 모델링은 MRR 성능 약 92%의 성능을 나타낸다.
-
본 연구는 초등 저학년 읽기부진아동을 위한 한글 파닉스 교육의 기반을 확립하고자 1-2학년 교과서 고빈도 어절 531개를 기반으로 자소 및 음운규칙을 분석하였다. 연구결과, 자소-음소 일치 어절을 기반으로 하였을 때 초성에서 50번 이상 나타난 자소는 /ㄱ/, /ㄹ/, /ㄴ/, /ㅅ/, /ㅎ/, /ㅈ/이다. 중성에서 50번 이상 나타난 자소는 /ㅏ/, /ㅣ/, /ㅗ/, /ㅡ/, /ㅜ/이다. 종성에서 50번 이상 나타난 자소는 /ㄹ/, /ㄴ/, /ㅇ/이다. 자소와 음소가 불일치 된 어절을 기반으로 하였을 때 가장 많이 출현하는 음운규칙은 연음화 규칙이었다. 본 연구결과를 바탕으로 교과서를 기반으로 한 한글 파닉스 교육에 유용하게 사용될 수 있을 것이다.
-
프로그래머들이 코딩을 할 때 발생하는 빈번한 실수는 많은 시간적 비용을 낭비할 수 있고 작은 실수가 전체 코드에 치명적인 에러를 유발하기도 한다. 이러한 문제점은 프로그래머들이 코드를 작성할 때 전체적인 알고리즘을 얼마나 잘 이해하는지와 이전 코드에 대한 이해력과 연관이 있다. 만약 코드에 대한 이해가 어렵다면 정교하고 간결한 코드를 작성하는데 무리가 있을 것이다. 기존 코드에 대한 난이도를 평가하는 방법은 자가평가 등을 통해 이루어져 왔다. 사람 내부 변화를 직접 측정하면 더 객관적인 평가가 가능할 것이다. 본 논문은 이런 문제들을 해결하고자 동공 추적이 가능한 아이트래커와 뇌파 측정이 가능한 EEG장비를 이용하여 습득한 생체 데이터를 통해 프로그래머들의 프로그램 난이도 예측 모델을 개발하였다.
-
본 논문은 사기업들의 개방 데이터를 바탕으로 사용자의 과거 행동과 주변 상황정보를 토대로 사용자의 음식 기호를 맞추는 앱 어플리케이션 '눈치코칭_음식'의 설계 및 구현에 대하여 서술한다. '눈치코칭_음식'은 사용자가 쉽게 음식점을 추천 받을 수 있도록 만들어진 앱 어플리케이션으로 기존의 필터링 방식으로 사용자가 검색하는 방식의 유사한 어플리케이션들과 달리 사용자의 주변 상황과 사용자의 행동패턴 분석을 통해 문제해결에 대한 도움을 줌으로써 시간 절약을 할 수 있다. 사용자의 별도의 입력을 받지 않고 앱에서의 간단한 클릭과 나의 음식 저장과 같은 기능을 활용할 때의 주변 위치나 날씨와 같은 상황정보를 함께 저장한 후 다음 앱 사용 시기의 상황정보와 비교하여 기존 데이터를 바탕으로 사용자에게 다시금 피드백 되는 앱이다. 사용자의 행동패턴에 따라 알림 기능을 활용하기 위해서 사용자 식사 시간 설정 기능을 통해 매일 식사하는 시간에 알림 설정을 할 수 있도록 만들었다. 또한 사용자의 편의성을 위해서 음식선택 시간의 평균을 내서 해당 설정 식사시간을 추적할 수 있도록 구성하였다.
-
데이터베이스 기반 자동 주소번역은 입력 오류에 취약하며 범용 기계번역을 이용한 주소번역은 입력 및 번역 주소에 대한 품질 평가가 어렵다. 본 논문에서는 예측할 수 없는 입력 오류에도 대응할 수 있는 자동 주소번역 시스템을 제안한다. 제안 시스템은 n-gram 기반 검색, 미검색/오검색 분류, 번역, 신뢰도 자동평가로 구성된다. 신뢰할 수 있는 입력으로 자동 분류한 영문 국내주소를 국문으로 번역한 결과 95%이상의 정확도를 보였다.
-
광학 문자 인식(OCR)을 통해 문서의 글자를 인식할 때 띄어쓰기 오류가 발생한다. 본 논문에서는 이를 해결하기 위해 OCR의 후처리 과정으로 동적 프로그래밍을 이용한 분절(Segmentation) 방식의 띄어쓰기 오류 교정 시스템을 제안한다. 제안하는 시스템의 띄어쓰기 오류 교정 과정은 다음과 같다. 첫째, 띄어쓰기 오류가 있다고 분류된 어절 내의 공백을 모두 제거한다. 둘째, 공백이 제거된 문자열을 동적 프로그래밍을 이용한 분절로 입력 문자열에 대하여 가능한 모든 띄어쓰기 후보들을 찾는다. 셋째, 뉴스 기사 말뭉치와 그 말뭉치에 기반을 둔 띄어쓰기 확률 모델을 참조하여 각 후보의 띄어쓰기 확률을 계산한다. 마지막으로 띄어쓰기 후보들 중 확률이 가장 높은 후보를 교정 결과로 제시한다. 본 논문에서 제안하는 시스템을 이용하여 OCR의 띄어쓰기 오류를 해결할 수 있었다. 향후 띄어쓰기 오류 교정에 필요한 언어 규칙 등을 시스템에 추가한 띄어쓰기 교정시스템을 통하여 OCR의 최종적인 인식률을 향상에 대해 연구할 예정이다.
-
단위성 의존명사는 수나 분량 따위를 나타내는 의존명사로 혼자 사용할 수 없으며 수사나 수관형사와 함께 사용하는 의존명사이다. 단위성 의존명사가 2가지 이상인 동형이의어의 경우 기존의 인접 어절을 이용한 동형이의어 분별 모델에서는 동형이의어 분별에 어려움이 있다. 본 논문에서는 단위성 의존명사 분별을 위해 단어 임베딩을 사용했으며 총 115,767개의 단어를 벡터로 표현하였으며 분별할 의존명사 주변에 등장한 명사들과의 유사도를 계산하여 단위성 의존명사를 분별하였다. 단어 임베딩을 이용한 단위성 의존명사 분별이 효과가 있음을 보았다.
-
다중 화자 대화 시스템에서, 시스템의 입장에서 어느 시점에 참여해야하는지를 아는 것은 중요하다. 이러한 참여 모델을 구축함에 있어서 본 연구에서는 다수의 화자가 대화에 참여하는 영화 대본으로 구축된 MovieDic 말뭉치를 사용하였다. 구축에 필요한 자질로써 의문사, 호칭, 명사, 어휘 등을 사용하였고, 훈련 알고리즘으로는 Maximum Entropy Classifier를 사용하였다. 실험 결과 53.34%의 정확도를 기록하였으며, 맥락 자질의 추가로 정확도 개선을 기대할 수 있다.
-
본 논문에서는 한국어에 최적화된 단어 임베딩을 학습하기 위한 방법을 소개한다. 단어 임베딩이란 각 단어가 분산된 의미를 지니도록 고정된 차원의 벡터공간에 대응 시키는 방법으로, 기계번역, 개체명 인식 등 많은 자연어처리 분야에서 활용되고 있다. 본 논문에서는 한국어에 대해 최적의 성능을 낼 수 있는 학습용 말뭉치와 임베딩 모델 및 적합한 하이퍼 파라미터를 실험적으로 찾고 그 결과를 분석한다.
-
본 논문은 비구조적인 자연어 문장으로부터 두 개체 사이의 관계를 표현하는 구조적인 트리플을 밝히는 관계추출에 관한 연구를 기술한다. 사람이 직접 언어적 분석을 통해 트리플이 표현되는 형식을 입력하여 관계를 추출하는 규칙 기반 접근법에 비해 기계가 데이터로부터 표현 형식을 학습하는 기계학습 기반 접근법은 더 다양한 표현 형식을 확보할 수 있다. 기계학습을 이용하려면 모델을 훈련하기 위한 학습 데이터가 필요한데 학습 데이터가 수집되는 방식에 따라 지도 학습, 원격지도 학습 등으로 구분할 수 있다. 지도 학습은 사람이 학습 데이터를 만들어야하므로 사람의 노력이 많이 필요한 단점이 있지만 양질의 데이터를 사용하는 만큼 고성능의 관계추출 모델을 만들기 용이하다. 원격지도 학습은 사람의 노력을 필요로 하지 않고 학습 데이터를 만들 수 있지만 데이터의 질이 떨어지는 만큼 높은 관계추출 모델의 성능을 기대하기 어렵다. 본 연구는 기계학습을 통해 관계추출 모델을 훈련하는데 있어 지도 학습과 원격지도 학습이 가지는 단점을 서로 보완하여 타협점을 제시하는 학습 방법을 제안한다.
-
채팅 시스템은 사람이 사용하는 언어로 컴퓨터와 의사소통을 하는 시스템이다. 최근 딥 러닝이 큰 화두가 되면서 다양한 채팅 시스템에 관한 연구가 빠르게 진행 되고 있다. 본 논문에서는 문장을 Recurrent Neural Network기반 의사형태소 분석기로 분리하고 Attention mechanism Encoder-Decoder Model의 입력으로 사용하는 채팅 시스템을 제안한다. 채팅 데이터를 통한 실험에서 사용자 문장이 짧은 경우는 답변이 잘 나오는 것을 확인하였으나 긴 문장에 대해서는 문법에 맞지 않는 문장이 생성되는 것을 알 수 있었다.
-
영어권 언어가 어절 단위로 품사를 부여하는 반면, 한국어는 굴절이 많이 일어나는 교착어로서 데이터부족 문제를 피하기 위해 형태소 단위로 품사를 부여한다. 이러한 구조적 차이 안에서 한국어에 적합한 품사 태깅 단위는 지속적으로 논의되어 왔으며 지금까지 음절, 형태소, 어절, 구가 제안되었다. 본 연구는 어절 단위로 태깅함으로써 야기되는 복잡한 품사 태그와 데이터부족 문제를 해소하기 위해 어절에서 주요 실질 형태소와 주요 형식 형태소만을 뽑아 새로운 어절을 생성하고, 생성된 단순한 어절에 대해 CRF 태깅을 수행하였다. 실험결과 평가 말뭉치에서 미등록 어절 등장 비율은 9.22%에서 5.63%로 38.95% 감소시키고, 어절단위 정확도를 85.04%에서 90.81%로 6.79% 향상시켰다.
-
외국인 유학생과 국내 체류 외국인을 포함하여 한국어를 학습하고자 하는 외국인이 지속적으로 증가함에 따라, 외국인 한국어 학습자의 교육에 대한 관심도 높아지고 있다. 기존 맞춤법 검사기는 한국어를 충분히 이해할 수 있는 한국인의 사용에 중점을 두고 있어, 외국인 한국어 학습자가 사용하기에는 다소 부적절하다. 본 논문에서는 한국어의 문맥 특성과 외국인의 작문 특성을 반영한 한국어 교정 방식을 제안한다. 제안하는 시스템에서는 말뭉치에서 추출한 어절 바이그램에 대한 음절 역색인을 구성하여 추천 표현을 빠르게 제시할 수 있으며, 키보드 후킹에 기반한 사용자인터페이스를 제공하여 사용자 편의를 높인다.
-
의미역 결정에서 하나의 의미 논항이 둘 이상의 의미역을 가지는 경우는 복수의 레이블을 할당하기 때문에 어려운 문제이다. 본 논문은 복수의 의미역을 가지는 항의 의미역 결정을 위한 새로운 자질을 제안한다. 복수의 의미역을 결정하기 위해서 체언보다 선행되어 나타나는 용언에 대한 자질을 추가하였다. 또한 문장의 용언에 따라 의미역을 결정하기 위해서 문장 내의 용언 수만큼 각각에 용언에 대한 의미역을 결정할 수 있도록 반복적으로 레이블링하는 방법을 제시하였다. 본 논문의 실험 결과로 제안한 방법은 74.90%의 성능(F1)을 보였다.
-
Cho, Seung-Woo;Kim, Young-Gil;Kwon, Hong-Seok;Lee, Eui-Hyun;Lee, Won-Ki;Cho, Hyung-Mi;Lee, Jong-Hyeok 280
본 논문에서는 기호로 둘러싸인 내포문이 포함된 문장의 번역 성능을 높이는 방법을 제안한다. 입력 문장에서 내포문을 추출하여 여러 문장으로 나타내고, 각각의 문장들을 번역한다. 그리고 번역된 문장들을 복원정보를 활용하여 최종 번역 문장을 생성한다. 이러한 방법론은 입력 문장의 길이를 줄여주며, 그로 인하여 문장 구조가 단순해져 번역 품질이 향상된다. 본 논문에서는 한국어-베트남어 통계 기반 번역기에 대하여 제안한 방법론을 적용하고 실험하였다. 그 결과 BLEU 점수가 약 1.5 향상된 것을 확인할 수 있었다. -
Lee, Won-Kee;Kim, Young-Gil;Lee, Eui-Hyun;Kwon, Hong-Seok;Jo, Seung-U;Cho, Hyung-Mi;Lee, Jong-Hyeok 285
한국어는 형태론적으로 굴절어에 속하는 언어로서, 어휘의 형태가 문장 속에서 문법적인 기능을 하게 되고, 형태론적으로 풍부한 언어라는 특징 때문에 조사나 어미와 같은 기능어들이 다양하게 내용어들과 결합한다. 이와 같은 특징들은 한국어를 대상으로 하는 구 기반 통계적 기계번역 시스템에서 데이터 부족 문제(Data Sparseness problem)를 더욱 크게 부각시킨다. 하지만, 한국어의 몇몇 조사와 어미는 함께 결합되는 내용어에 따라 의미는 같지만 두 가지의 형태를 가지는 이형태로 존재한다. 따라서 본 논문에서 이러한 이형태들을 하나로 표준화하여 데이터부족 문제를 완화하고, 베트남-한국어 통계적 기계 번역에서 성능이 개선됨을 보였다. -
본 논문에서는 한국어 기본 유니트 단위로 WPM을 활용한 구글 플레이 스토어 앱의 댓글 감정분석을 수행하였다. 먼저 자동 띄어쓰기 시스템을 적용한 후, 어절단위, 형태소 분석기, WPM을 각각 적용하여 모델을 생성하고, 로지스틱 회귀(Logistic Regression), 소프트맥스 회귀(Softmax Regression), 서포트 벡터머신(Support Vector Machine, SVM)등의 알고리즘을 이용하여 댓글 감정(긍정과 부정)을 비교 분석하였다. 그 결과 어절단위, 형태소 분석기보다 WPM이 최대 25%의 향상된 결과를 얻었다. 또한 분류 과정에서 로지스틱회귀, 소프트맥스 회귀보다는 SVM 성능이 우수했으며, SVM의 기본 파라미터({'kernel':('linear'), 'c':[4]})보다 최적의 파라미터를 적용({'kernel': ('linear','rbf', 'sigmoid', 'poly'), 'C':[0.01, 0.1, 1.4.5]} 하였을 때, 최대 91%의 성능이 나타났다.
-
현재 자동번역에는 통계적 방법에 속하는 통계기반 자동번역 시스템(SMT)이 많이 사용되고 있지만, 학습 데이터로 사용되는 대용량의 병렬 말뭉치를 수동으로 구축하는데 어려움이 있다. 본 연구의 목적은 통계기반 자동번역의 성능을 향상시키기 위해 기존 다른 언어쌍의 말뭉치와 SMT 자동번역 기술을 이용하여 대상이 되는 언어쌍의 SMT 병렬 말뭉치를 자동으로 확장하는 방법을 제안한다. 제안 방법은 서로 다른 언어 B와 C의 병렬 말뭉치를 얻기 위해, A와 B의 SMT 자동번역 시스템을 구축하고 기존의 A-C 말뭉치의 A를 SMT를 통해 B로 번역하여 B와 C의 말뭉치를 자동으로 확장한다. 실험을 통해 확장한 병렬 말뭉치가 통계기반 자동번역 시스템의 성능을 향상시킬 수 있음을 확인한다.
-
본 논문에서는 한국어 의미역 결정을 순차열 분류 문제(Sequence Labeling Problem)가 아닌 순차열 변환 문제(Sequence-to-Sequence Learning)로 접근하였고, 구문 분석 단계와 자질 설계가 필요 없는 End-to-end 방식으로 연구를 진행하였다. 음절 단위의 RNN Search 모델을 사용하여 음절 단위로 입력된 문장을 의미역이 달린 어절들로 변환하였다. 또한 순차열 변환 문제의 성능을 높이기 위해 연구된 인풋-피딩(Input-feeding) 기술과 카피넷(CopyNet) 기술을 한국어 의미역 결정에 적용하였다. 실험 결과, Korean PropBank 데이터에서 79.42%의 레이블 단위 f1-score, 71.58%의 어절 단위 f1-score를 보였다.
-
식품안전 사고가 발생했을 때 뉴스, 인터넷 기사를 통해 정보를 인지하기 전에 그 음식을 섭취하는 경우가 발생하는 문제점 최소화하기 위하여 실시간 트윗 분석으로 현재 발생한 식품안전 키워드와 어느 지역에서 발생했는지를 신속하게 파악하고, 키워드 연관관계 분석 프로그램을 활용하여 정확한 정보를 추출한다. 이와 더불어, SNS 등 다양한 정보 소스로부터 추출한 정보를 간단명료하게 파악하기 위해서 워드 클라우드 등 데이터 시각화 기법을 활용하여 시각화로 정보를 제공한다. 이 기법은 식품안전 뿐만 아니라 최근 발생한 콜레라 감염 발생과 같은 문제를 해결하기 위한 방법으로 활용될 수 있을 것이다.
-
이중언어 사전은 자연어처리 분야에서 매우 유용한 자원으로 사용되고 있다. 그러나 초기사전이나 병렬말뭉치 등 자원이 부족한 언어 쌍에 대해서 이중언어 사전을 추출하는 것은 쉽지 않다. 이러한 문제를 해결하기 위해 본 논문에서는 중간 언어 기반으로 Word2Vec와 CCA를 이용하여 이중언어 사전을 추출하는 방법을 제안한다. 본 논문에서 제안하는 방법의 성능을 평가하기 위해서 중간언어로 영어를 사용하여 스페인어-한국어에 대한 이중언어 사전을 추출하는 실험을 하였다. 무작위로 뽑은 200개의 단어에 대한 번역 정확도를 구하였다. 그 결과 최상위에서 37.5%, 상위 10위에서 63%, 그리고 상위 20위에서는 69.5%의 정확도를 얻을 수 있었다.
-
OCR(Optical Character Recognition)의 오류를 줄이기 위해 본 논문에서는 교정 어휘 쌍의 혼동 행렬(confusion matrix)과 나이브 베이즈 분류기(
$na{\ddot{i}}ve$ Bayes classifier)를 이용한 철자 교정 시스템을 제안한다. 본 시스템에서는 철자 오류 중 한글에 대한 철자 오류만을 교정하였다. 실험에 사용된 말뭉치는 한국어 원시 말뭉치와 OCR 출력 말뭉치, OCR 정답 말뭉치이다. 한국어 원시 말뭉치로부터 자소 단위의 언어 모델(language model)과 교정 후보 검색을 위한 접두사 말뭉치를 구축했고, OCR 출력 말뭉치와 OCR 정답 말뭉치로부터 교정 어휘 쌍을 추출하고, 자소 단위로 분해하여 혼동 행렬을 만들고, 이를 이용하여 오류 모델(error model)을 구축했다. 접두사 말뭉치를 이용해서 교정 후보를 찾고 나이브 베이즈 분류기를 통해 확률이 높은 교정 후보 n개를 제시하였다. 후보 n개 내에 정답 어절이 있다면 교정을 성공하였다고 판단했고, 그 결과 약 97.73%의 인식률을 가지는 OCR에서, 3개의 교정 후보를 제시하였을 때, 약 0.28% 향상된 98.01%의 인식률을 보였다. 이는 한글에 대한 오류를 교정했을 때이며, 향후 특수 문자와 숫자 등을 복합적으로 처리하여 교정을 시도한다면 더 나은 결과를 보여줄 것이라 기대한다. -
온톨로지란 사물이나 개념의 속성이나 관계를 사람과 컴퓨터 모두 이해할 수 있는 형태로 표현한 모델로 정보검색, 인공지능, 소프트웨어 공학 등의 분야에서 많이 활용된다. 온톨로지에는 다양한 정보가 구조화되어 저장되어 있지만 일반적으로 온톨로지가 제공하는 그래프 형태의 데이터들은 사용자들이 직관적으로 이해하기가 힘들다. 따라서 본 논문에서는 온톨로지의 정보를 문장화하여 한국어 문서를 생성하는 시스템을 제안한다. 제안하는 시스템은 주제와 관련된 트리플을 추출하고 이를 문장정렬, 결합, 생성을 위한 정보가 담긴 템플릿을 생성한 뒤 한국어 문법에 맞게 문장을 생성한다. 또한 기존 연구에서 다루지 않았던 이벤트 온톨로지의 내용을 포함하여 문장을 생성한다. 두 온톨로지로부터 생성된 문장을 연결하여 주제어를 설명하는 하나의 문서를 작성한다.
-
기계학습 기반의 자연어처리 모듈에서 중요한 단계 중 하나는 모듈의 입력으로 단어를 표현하는 것이다. 벡터의 사이즈가 크고, 단어 간의 유사성의 개념이 존재하지 않는 One-hot 형태와 대조적으로 유사성을 표현하기 위해서 단어를 벡터로 표현하는 단어 표현 (word representation/embedding) 생성 작업은 자연어 처리 작업의 기계학습 모델의 성능을 개선하고, 몇몇 자연어 처리 분야의 모델에서 성능 향상을 보여 주어 많은 관심을 받고 있다. 본 논문에서는 Word2Vec, CCA, 그리고 GloVe를 사용하여 106,552개의 PubMed의 바이오메디컬 논문의 요약으로 구축된 말뭉치 카테고리의 각 단어 표현 모델의 카테고리 분류 능력을 확인한다. 세부적으로 나눈 카테고리에는 질병의 이름, 질병 증상, 그리고 난소암 마커가 있다. 분류 능력을 확인하기 위해 t-SNE를 이용하여 2차원으로 단어 표현 결과를 맵핑하여 가시화 한다. 2차원으로 맵핑된 결과 값을 코사인 유사도를 사용하여 질병과 바이오 마커간의 유사도를 구한다. 이 유사도 결과 값 상위 20쌍의 결과를 가지고 실제 연구가 되고 있는지 구글 스콜라를 통해 관련 논문을 검색하여 확인하고, 검색 결과를 점수화 한다. 실험 결과 상위 20쌍 중에서 85%의 쌍이 실제적으로 질병과 바이오 마커 간의 관계를 파악하는 방향으로 진행 되고 있으나, 나머지 15%의 쌍에 대해서는 실질적인 연구가 잘 되고 있지 않은 것으로 파악되었다.
-
최근 연구에서 기계학습 중 지도학습 방법으로 개체명 인식을 하고 있다. 그러나 지도 학습 방법은 데이터를 만드는 비용과 시간이 많이 필요로 한다. 본 연구에서는 주석 된 말뭉치를 사용하여 지도 학습 방법을 사용 한다. 의생명 개체명 인식은 Protein, RNA, DNA, Cell type, Cell line 등을 포함한 텍스트 처리에 중요한 기초 작업입니다. 그리고 의생명 지식 검색에서 가장 기본과 핵심 작업 중 하나이다. 본 연구에서는 순환형 신경망과 워드 임베딩을 자질로 사용한 조건적 임의 필드에 대한 성능을 비교한다. 조건적 임의 필드에 N_Gram만을 자질로 사용한 것을 기준점으로 설정 하였고, 기준점의 결과는 70.09% F1 Score이다. RNN의 jordan type은 60.75% F1 Score, elman type은 58.80% F1 Score의 성능을 보여준다. 조건적 임의 필드에 CCA, GLOVE, WORD2VEC을 사용 한 결과는 각각 72.73% F1 Score, 72.74% F1 Score, 72.82% F1 Score의 성능을 얻을 수 있다.
-
의미역 결정은 자연어 문장의 서술어와 그 서술어에 속하는 논항들 사이의 의미관계를 결정하는 것이다. 최근 의미역 결정 연구에는 의미역 말뭉치와 기계학습 알고리즘을 이용한 연구가 주를 이루고 있다. 본 논문에서는 순차적 레이블링 영역에서 좋은 성능을 보이고 있는 Bidirectional LSTM-CRFs 기반으로 음절의 의미역 태그 분포를 고려한 의미역 결정 모델을 제안한다. 제안한 음절의 의미역 태그 분포를 고려한 의미역 결정 모델은 분포가 고려되지 않은 모델에 비해 2.41%p 향상된 66.13%의 의미역 결정 성능을 보였다.
-
본 연구에서는 개체명 인식의 성능을 향상시키기 위해, 가중 투표 방법을 이용하여 개체명 인식 모델을 앙상블 하는 방법을 제안한다. 각 모델은 Conditional Random Fields의 변형 알고리즘을 사용하여 학습하고, 모델들의 가중치는 다목적 함수 최적화 기법인 NSGA-II 알고리즘으로 학습한다. 실험 결과 제안 시스템은
$F_1Score$ 기준으로 87.62%의 성능을 보여, 단독 모델 중 가장 높은 성능을 보인 방법보다 2.15%p 성능이 향상되었다. -
본 논문에서는 한국어 개체명 인식의 성능 향상을 위하여 워드 임베딩을 활용할 수 있는 방법에 대하여 기술한다. 워드 임베딩이란 문장의 단어의 공기정보를 바탕으로 그 단어의 의미를 벡터로 표현하는 분산표현이다. 이러한 분산 표현은 단어 간의 유의미한 정도를 계산하는데 유용하다. 본 논문에서는 이러한 워드 임베딩을 통하여 단어 벡터들의 코사인 유사도를 통한 개체명 사전 자가 학습 및 매칭 방법을 적용하고, 그 실험 결과를 보고한다.
-
개체명 인식은 질의 응답, 정보 검색, 기계 번역 등 다양한 분야에서 유용하게 사용되고 있는 기술이다. 개체명 인식의 경우 인식의 대상인 개체명이 대부분 새롭게 등장하거나 기존에 존재하는 단어와 중의적 의미를 갖는 고유한 단어라는 문제점이 있다. 본 논문에서는 한국어 개체명 인식에서 미등록어 및 중의성 문제를 해결하기 위한 딥 러닝 모델을 제안한다. 제안하는 모델은 형태소 및 자음/모음을 이용하여 새롭게 등장하는 단어에 대한 기존 단어와의 형태적 유사성을 고려한다. 또한 임베딩 및 양방향 LSTM-RNNs-CRF 모델을 이용하여, 각 입력 값의 문맥에 따른 의미적 유사성, 문법적 유사성을 고려한다. 제안하는 딥 러닝 모델을 사용하여, F1 점수 85.71의 결과를 얻었다.