The objective of this study is to assess the impact of potential climate change on the hydrological components, especially on the streamflow, evapotranspiration and snowmelt, by using the Soil Water Assessment Tool (SWAT) for 17 Hanriver middle watersheds of South Korea. For future assessment, the SWAT model was calibrated in multiple sites using 4 years (2006-2009) and validated by using 2 years (2010-2011) daily observed data. For the model validation, the Nash-Sutcliffe model efficiency (NSE) for streamflow were 0.30-0.75. By applying the future scenarios predicted five future time periods Baseline (1992-2011), 2040s (2021-2040), 2060s (2041-2060), 2080s (2061-2080) and 2100s (2081-2100) to SWAT model, the 17 middle watersheds hydrological components of evapotranspiration, streamflow and snowmelt were evaluated. For the future precipitation and temperature of RCP 4.5 scenario increased 41.7 mm (2100s), $+3^{\circ}C$ conditions, the future streamflow showed +32.5 % (2040s), +24.8 % (2060s), +50.5 % (2080s) and +55.0 % (2100s). For the precipitation and temperature of RCP 8.5 scenario increased 63.9 mm (2100s), $+5.8^{\circ}C$ conditions, the future streamflow showed +35.5 % (2040s), +68.9 % (2060s), +58.0 % (2080s) and +63.6 % (2100s). To determine the impact on snowmelt for Hanriver middle watersheds, snowmelt parameters of SWAT model were determined through evaluating observed streamflow data during snowmelt periods (November-April). The results showed that average SMR (snowmelt / runoff) of 17 Hanriver middle watersheds was 62.0 % (Baseline). The annual average SMR were 42.0 % (2040s), 39.8 % (2060s), 29.4 % (2080s) and 27.9 % (2100s) by applying RCP 4.5 scenario. Also, the annual average SMR by applying RCP 8.5 scenario were 40.1 % (2040s), 29.4 % (2060s), 18.3 % (2080s) and 12.7 % (2100s).