Proceedings of the Korean Society for Applied Microbiology Conference (한국미생물생명공학회:학술대회논문집)
The Korean Society for Microbiology and Biotechnology
- 기타
Domain
- Life Science > Genetics/Genetic Engineering
2001.06a
-
Jeong, Jea-Hoon;Lee, Joon;Kwon, Eun-Soo;Cha, Joon-Seok;Chung, Woo-Hyun;Song, Ji-Yoon;Roe, Jung-Hye 7
-
Birgit, Huber;Kathin, Riedel;Morten, Hentzer;Arne, Heydron;Astrid, Gotschlich;Michael, Givskov;Soren, Molin;Leo, Eberl 9
-
Creating an artificial strain with a minimal gene set for a specific purpose is every biologist's dream. With the complete genome sequencing of more than 50 microorganisms and extensive functional analyses of their genes, it is possible to design a genetic blueprint for a simple custom-designed microbe with the minimal gene set. Two different approaches are being considered. The first 'top-down' approach is trimming the genome to a minimal gene set by selectively removing genes of an organism thought to be unnecessary based on microbial genomics. The second 'bottom-up' approach is to synthesize the proposed minimal genome from basic chemical building blocks. The 'top-down' approach starting with the genome of a well known microorganism is more technically feasible, whereas the bottom-up approach may not be attainable in the nearest future because of the lack of the complete functional analysis of the genes needed for a life. Here in this study, we used the top-down approach to minimize the E. coli genome to create an artificial organism with 'core' elements for self-sustaining and self-replicating cells by eliminating unnecessary genes. Using several different kinds of sophisticated deletion techniques combined with a p:1age and transposons, we deleted about 19% of the E. coli genome without causing any damages to cellular growth. This smaller E. coli genome will be further reduced to a genome with a minimal gene l;et essential for cell life. This minimized E. coli genome can lead to the construction of many custom-designed strains with myriad practical and commercial applications.
-
Previous biochemical assays and a structural model indicated that the dimer interface of the Hin recombinase is composed of the two a-helices. To elucidate the structure and function of the helix, amino acids in the N-terminal end of the helix, where the two helices contact most, were randomized, and inversion-incompetent mutants were selected. To investigate why the mutants lost their inversion activities, the DNA binding, hix-pairing, invertasome formation, and DNA cleavage activities were assayed using in vivo and in vitro methodologies. Results indicated that the mutants could be divided into 4 classes based on their DNA binding activity. We proposed that the a-helices might place a DNA binding motif of Hin properly to the minor DNA groove of the recombination site. All the mutants except the non-binders were able to perform hix-pairing and invertasome formation, suggesting that the dimer interface is not involved in the process of hix-pairing or invertasome formation. The inversion-incompetent phenotype of the binders was caused by the inability of mutants to perform the DNA cleavage activity. The less binders exhibited wild-type level of hix-pairing activity because the hix-pairing activity overcomes the DNA binding defect of the less binders. This phenotype of the less binders suggests that the binding domains of Hin could mediate Hin-Hin interaction during hix-pairing..
-
-
The Integration Host factor (IHF) of Escherichia coli is a small, basic protein that is required for a variety of functions including site-specific recombination, transposition, gene regulation, plasmid replication, and DNA packaging. It ,is composed of two subunits that are encoded by the ihfA (
$\alpha$ -subunit) and ihjB ($\beta$ -subunit) genes. IHF binding sites are composed of three elements called the WATCAR, TTG, and poly (dAT) elements. We have characterized IHF binding to the H site of bacteriophage λ. We have isolated suppressors that bind to altered H' sites using a challenge phage selection. Two different suppressors were isolated that changed the adjacent$\alpha$ P64 and$\alpha$ K65 residues. The suppressors recognized both the wild-type site and a site with a change in the WATCAR element. Three suppressors were isolated at$\beta$ -E44. These suppressors bound the wild-type and a mutant site with a T:A to A:T change (H44A) in the middle of the TIR element. Site-directed mutagenesis was used to make several additional changes at$\beta$ E44. The wild-type and$\beta$ E44D mutant could not bind the wild-type site but were able to bind the H44A mutant site. Other mutants with neutral, polar, or a positive charge at$\beta$ E44 were able to repress both the wild-type and H44A sites. Examination of the IHF crystal structure suggests that the ability of the wild-type and$\beta$ E44D proteins to discriminate between the T:A and A:T basepairs is due to indirect interactions. The$\beta$ -E44 residue does not contact the DNA directly. It imposes binding specificity indirectly by interactions with residues that contact the DNA. Details of the proposed interactions are discussed. -
Raw starch-digesting amylase (BF-2A, M.W. 93, 000 Da) from Bacillus circulans F-2 was converted to two components during digestion with subtilisin. Two components were separated and designated as BF-2A' (63, 000 Da) and BF-2B (30, 000 Da), respectively. BF-2A' exhibited the same hydrolysis curve for soluble starch as the original amylase (BF-2A). Moreover, the catalytic activities of original and modified enzymes were indistinguishable in
$K_{m}$ , Vmax for, and in their specific activity for soluble starch hydrolysis. However, its adsorbability and digestibility on raw starch was greatly decreased. Furthermore, the enzymatic action pattern on soluble starch was greatly different from that of the BF-2A. A smaller peptide (BF-2B) showed adsorb ability onto raw starch. By these results, it is suggested that the larger peptide (BF-2A') has a region responsible for the expression of the enzyme activity to hydrolyze soluble substrate, and the smaller peptide (BF-2B) plays a role on raw starch adsorption. A similar phenomenon is observed during limited proteinase K, thermolysin, and endopeptidase Glu-C proteolysis of the enzyme. Fragments resulting from proteolysis were characterized by immunoblotting with anti-RSDA. The proteolytic patterns resulting from proteinase K and subtilisin were the same, producing 63- and 30-kDa fragments. Similar patterns were obtained with endopeptidase Glu-C or thermolysin. All proteolytic digests contained a common, major 63-kDa fragment. Inactivation of RSDA activity results from splitting off the C-terminal domain. Hence, it seems probable that the protease sensitive locus is in a hinge region susceptible to cleavage. Extracellular enzymes immunoreactive toward anti-RSDA were detected through whole bacterial cultivation. Proteins of sizes 93-, 75-, 63-, 55-, 38-, and 31-kDa were immunologically identical to RSDA. Of these, the 75-kDa and 63-kDa proteins correspond to the major products of proteolysis with Glu-C and thermolysin. These results postulated that enzyme heterogeneity of the raw starch-hydrolysis system might arise from the endogeneous proteolytic activity of the bacterium. Truncated forms of rsda, in which the gene sequence encoding the conserved domain had been deleted, directed the synthesis of a functional amylase that did not bind to raw starch. This indicates that the conserved region of RSDA constitutes a raw starch-binding domain, which is distinct from the active centre. The possible role of this substrate-binding region is discussed.d. -
-
-
Chaperone Assisted Overexpression of D-carbamoylase Independent of the Redox State of Host CytoplasmThe N-carbamoyl-D-amino acid amidohydrolase (D-carbamoylase) gene (dcb) from Agrobacterium tumefaciens AM 10 has been successfully cloned and expressed in Escherichia coli. Expression of D-carbamoylase gene under the 17 promoter in different host strains showed that the optimal expression was achieved in E. coli JM109 (DE3) with a 9-fold increase in enzyme production compared to the wild-type strain. The co-expression of the GroEL/ES protein with D-carbamoylase protein caused an in vivo solubilization of D-carbamoylase in an active form. The synergistic effect of GroEL/ES at 28
$^{\circ}C$ led to 60 % solubilization of the total expressed target protein with a 6.2-fold increase in enzyme activity in comparison to that expressed without GroEL/ES and 43-fold increase in enzyme activity compared to A. tumefaciens AM 10. Attempts to express D-carbamoylase in an altered redox cytoplasmic milieu did not improve the enzyme production in an active form. The Histidyl-tagged D-carbamoylase was purified in a single step by Nickel-affinity chromatography and was found to have a specific activity of 9.5 U/mg protein. -
$\alpha$ -Glucosidase contributing$\alpha$ -glucan metabolism in microorganisms is characterized by the variety in substrate recognition. Recent studies on microbial enzymes show that$\alpha$ -glucosidases are divided into two groups, family I and family n, in which family I enzymes have four conserved catalytic-regions of$\alpha$ -amylase family. The presentation focusing on the difference of the$\alpha$ -glucosidase families reviews i) the catalytic amino-acid residues of nucleophile and acid/base catalyst, and ii) the molecular evolution of two families. -
A variety of different methods to generate diverse proteins, including random mutagenesis and recombination, are currently available, and most of them accumulate the mutations on the target gene of a protein, whose sequence space remains unchanged. On the other hand, a pool of diverse genes, which is generated by random insertions, deletions, and exchange of the homologous domains with different lengths in the target gene, would present the protein lineages resulting in new fitness landscapes. Here we report a method to generate a pool of protein variants with different sequence spaces by employing green fluorescent protein (GFP) as a model protein. This process, designated functional salvage screen (FSS), comprises the following procedures: a defective GFP template expressing no fluorescence is firstly constructed by genetically disrupting a predetermined region(s) of the protein, and a library of GFP variants is generated from the defective template by incorporating the randomly fragmented genomic DNA from E. coli into the defined region(s) of the target gene, followed by screening of the functionally salvaged, fluorescence-emitting GFPs. Two approaches, sequence-directed and PCR-coupled methods, were attempted to generate the library of GFP variants with new sequences derived from the genomic segments of E. coli. The functionally salvaged GFPs were selected and analyzed in terms of the sequence space and functional property. The results demonstrate that the functional salvage process not only can be a simple and effective method to create protein lineages with new sequence spaces, but also can be useful in elucidating the involvement of a specific region(s) or domain(s) in the structure and function of protein.
-
-
Recent advances in the structural and molecular biology uncovered that a set of translation factors resembles a tRNA shape and, in one case, even mimics a tRNA function for deciphering the genetic :ode. Nature must have evolved this 'art' of molecular mimicry between protein and ribonucleic acid using different protein architectures to fulfill the requirement of a ribosome 'machine'. Termination of protein synthesis takes place on the ribosomes as a response to a stop, rather than a sense, codon in the 'decoding' site (A site). Translation termination requires two classes of polypeptide release factors (RFs): a class-I factor, codon-specific RFs (RFI and RF2 in prokaryotes; eRFI in eukaryotes), and a class-IT factor, non-specific RFs (RF3 in prokaryotes; eRF3 in eukaryotes) that bind guanine nucleotides and stimulate class-I RF activity. The underlying mechanism for translation termination represents a long-standing coding problem of considerable interest since it entails protein-RNA recognition instead of the well-understood codon-anticodon pairing during the mRNA-tRNA interaction. Molecular mimicry between protein and nucleic acid is a novel concept in biology, proposed in 1995 from three crystallographic discoveries, one, on protein-RNA mimicry, and the other two, on protein-DNA mimicry. Nyborg, Clark and colleagues have first described this concept when they solved the crystal structure of elongation factor EF- Tu:GTP:aminoacyl-tRNA ternary complex and found its overall structural similarity with another elongation factor EF-G including the resemblance of part of EF-G to the anticodon stem of tRNA (Nissen et al. 1995). Protein mimicry of DNA has been shown in the crystal structure of the uracil-DNA glycosylase-uracil glycosylase inhibitor protein complex (Mol et al. 1995; Savva and Pear 1995) as well as in the NMR structure of transcription factor TBP-TA
$F_{II}$ 230 complex (Liu et al. 1998). Consistent with this discovery, functional mimicry of a major autoantigenic epitope of the human insulin receptor by RNA has been suggested (Doudna et al. 1995) but its nature of mimic is. still largely unknown. The milestone of functional mimicry between protein and nucleic acid has been achieved by the discovery of 'peptide anticodon' that deciphers stop codons in mRNA (Ito et al. 2000). It is surprising that it took 4 decades since the discovery of the genetic code to figure out the basic mechanisms behind the deciphering of its 64 codons. -
-
-
-
-
A thermotolerant bacterium, designated as PHS1, was isolated from a hot spring in Pohang, Korea, on the basis of its ability to grow on BTEX as a sole carbon source. We cloned and sequenced the entire BTEX-degrading pathway genes of PHS1 and found that two multicomponent mono-oxygenases together with meta-pathway genes are responsible for the BTEX biodegradation.
-
A Southern-hybridization analysis and size-selected DNA library screening led to the isolation of a 6.3-kbp S. setonii DNA fragment, from which the Cl20-encoding genetic locus was found to be located within a 1.4-kbp DNA fragment. A complete nucleotide sequencing analysis of the 1.4-kbp DNA fragment revealed a 0.84-kbp ORF, which showed a strong overall amino acid similarity to the known high-G+C gram-positive bacterial mesophilic C120s. The heterologous expression of the cloned 1.4-kbp DNA fragment in E. coli demonstrated that this Cl20 possessed a thermophilic activity within a broad temperature range and showed a higher activity against 3-methy1catechol than catechol or 4-methy-catechol, but no activity against protocatecuate.
-
-
-
The Tk-ptp gene encoding a protein tyrosine phosphatase (PTPase) from the hyperthermophilic archaeon Thermococcus kodakaraensis KODI was cloned and sequenced. Sequence analysis indicated that Tk-ptp encoded a protein consisting 147 amino acid residues (16,953 Da). The wild type and the mutants were expressed in Escherichia coli cells as His-tagged fusion proteins and examined for enzyme characteristics. Tk-PTP possessed two unique features that were not found in eucaryal and bacterial counterparts. First, the recombinant Tk-PTP showed the phosphatase activity not only for the phosphotyrosine but also phosphoserine. Second, the conserved Asp (Asp-63), which was considered to be a critical residue, was not involved in catalysis. In order to know a specific substrate for Tk-PTP, C93S mutant was used to trap substrate protein. Proteins of 120, 60 and 53 kDa were isolated specifically from KODI cell lysates by affinity chromatography with Tk-PTP-C93S. It is suggested that these proteins are tyrosine-phosphorylated substrates of Tk-PTP.
-
-
Isopentenyl diphosphate (IPP) is the common, five-carbon building block in the biosynthesis of all carotenoids. IPP in Escherichia coli is synthesized through the non-mevalonate pathway. The first reaction of IPP biosynthesis in E. coli is the formation of l-deoxy-D-xylulose-5-phosphate (DXP), catalyzed by DXP synthase and encoded by dxs. The second reaction in the pathway is the reduction of DXP to 2-C-methyl-D-erythritol-4-phosphate, catalyzed by DXP reductoisomerase and encoded by dxr. To determine if one or more of the reactions in the non-mevalonate pathway controlled flux to IPP, dxs and dxr were placed on several expression vectors under the control of three different promoters and transformed into three E. coli strains (DH5
$\alpha$ , XL1-Blue, and JMl0l) that had been engineered to produce lycopene. Lycopene production was improved significantly in strains transformed with the dxs expression vectors. When the dxs gene was expressed from the arabinose-inducible araBAD promoter ($P_{BAD}$ ) on a medium-copy plasmid, lycopene production was 2-fold higher than when dxs was expressed from the IPTG-inducible trc and lac promoters ($P_{trc}$ and$P_{lac}$ , respectively) on medium-copy and high-copy plasmids. Given the low final densities of cells expressing dxs from IPTG-inducible promoters, the low lycopene production was probably due to the metabolic burden of plasmid maintenance and an excessive drain of central metabolic intermediates. At arabinose concentrations between 0 and 1.33 roM, cells expressing both dxs and dxr from$P_{BAD}$ on a medium-copy plasmid produced 1.4 - 2.0 times more lycopene than cells expressing dxs only. However, at higher arabinose concentrations lycopene . production in cells expressing both dxs and dxr was lower than in cells expressing dxs only. A comparison of the three E. coli strains transformed with the arabinose-inducible dxs on a medium-copy plasmid revealed that lycopene production was highest in XLI-Blue.LI-Blue. -
The objective of this study was to investigate the behavior of ribonuclease A (RNase) at the water/methylene chloride interface. It was aimed at better understanding the denaturation of proteins upon emulsification. RNase was vulnerable to the interface-induced aggregation reactions that led to formation of water-insoluble aggregates upon emulsification. Biochemical analyses demonstrated that intermolecular covalent linkages might have been involved in the aggregation reactions. The protein instability observed with emulsification was traced to consequences of protein adsorption and conformational rearrangements at the interface. These results indicated that emulsifying aqueous protein solutions in organic solvents should be handled with care, since emulsification could bring denaturation and aggregation to proteins.
-
To investigate the mode of bactericidal action for antimicrobial peptide, pediocin, synthetic and mutant pediocins were prepared by direct chemical synthesis. Native pediocin was purified from Pedio-coccus acidilactici M and its conformational structure and bactericidal functions were analyzed and compared to synthetic pediocin. Schematic mode of pediocin actions, how pediocin binds on the target cell membrane, penetrates and makes tunnel are proposed. For these purposes, primary and secondary structures of pediocin was analyzed and disulfide bond assignment was also done. The pediocin purified from P. acidilactici M had high effective bactericidal ability against gram positive bacteria, especially Listeria monocytogenes and was very stable at extreme pHs and even at high temperatures such as autoclaving temperature (121
$^{\circ}C$ ). Pediocin was consisted of 44 amino acids with four cysteines. Novel synthetic peptides were achieved by solid phase peptide synthesis(SPPS) method. To explain the function of cysteine in C-terminal region, mutant pediocin, Ped[C24A+C44A], was synthesized and their structural and biological functions were analyzed. Second mutant pediocin, Ped[KllE], was prepared to explain the function of lysine at 11 of N-terminal part of pediocin, especially loop of$\beta$ -sheet, and to predict the initial binding site of pediocin. The native and synthetic pediocins was showed random coil conformation by spectropolarimetry in moderate conditions. This conformation was observed in extreme conditions such as high temperature and low and high pHs, also. Circular dichroism(CD) data also showed the existence of$\beta$ -turn structure in N-terminal part both native and synthetic pediocins. A structural model for pediocin predicts that 18 amino acids in the N-terminal part of the peptide assume a three-strand$\beta$ -sheet conformation. This random coil in C-terminal part of pediocin was converted to folding structure, helix structure, in nonpolar solvents such as alcohol and TFE. The disulfide bond between$^{9}$ Cys and$^{14}$ Cys was concrete and inevitable, however, evidences of disulfide bond between$^{24}$ Cys and$^{44}$ Cys was not. Data of Ped[C24A+C44A], pediocin mutant showed that$^{44}$ Cys was required during killing the target cells but not inevitable, since Ped[C24A+C44A] still have bactericidal activity but much less than native pediocin. Another pediocin mutant, Ped[KllE], had still bactericidal activity, was controversial to propose that positive charge like as$^{11}$ Lys in loop or hinge in bacteriocin bound or helped to binding to microorganism with electrostatic interaction between cell membrane especially teichoic acid and positive amino acid nonspecifically. The conformation of pediocin among native, synthetic and mutant pediocins did not show big difference. The conformations between oxidized and reduced pediocin were almost similar regardless of native or synthetic. -
Bifidobacterium spp. is nonpathogenic, gram-positive and anaerobic bacteria, which inhabit the intestinal tract of humans and animals. In breast-fed infants, bifidobacteria comprise morethan 90% of the gut bacterial population. Bifidobacteria spp. are used in commericial fermented dairy products and have been suggested to exert health promoting effects on the host by maintaining intestinal microflora balances, improving lactose tolerance, reducing serum cholesterol levels, increasing synthesis of vitamins, and aiding the immune enchancement and anticarcinogenic activity for the host. These beneficial effects of Bifidobacterium are strain-related. Therefore continued efforts to improve strain characteristics are warranted. in these respect, development of vector system for Bifidobacterium is very important not only for the strain improvement but also because Bifidobacterium is most promising in serving as a delivery system for the useful gene products, such as vaccine or anticarcinogenic polypeptides, into human intestinal tract. For developing vector system, we have characterized several bifidobacterial plasmids at genetic level and developed several shuttle vectors between E. coli and Bifidobacterium using them. Also, we have cloned and sequenced several metabolic genes and food grade selection marker. Also we have obtained bifidobacterial surface protein, which will be used as the mediator for surface display of foreign genes. Recently we have succeeded in expressing amylase and GFP in Bifidobacterium using our own expression vector system. Now we are in a very exciting stage for the molecular breeding and safe delivery system using probiotic Bifidobacterium strains.
-
Kim, Mu-Jo;Shinji Higashiguchi;Yoshitomo Iwamoto;Kiyoshi Hayakawa;Yoshie Ueno;Lee, Shi-Yong;Koh, Ui-Chan;Cho, Hong-Yon 158
-
A number of bacterial species produce extracellular lipases. Among them, many lipase genes have been cloned and sequenced. A comparison of primary sequences revealed only very limited sequence homology among them. Based on the sequence homologies and molecular sizes (Mr), bacterial lipases were classified into four discrete groups. From soil samples taken around Taejon, five different lipase-producing bacteria were isolated; Proteus vulgaris K80, Bacillus stearothermophilus Ll, B. pumilus B26, Staphylococcus haemolyticus L62, S. aureus B56. Nucleotide sequence analysis showed that Staphylococcus lipase genes (L62 and B56) composed of pre-pro-mature parts, Bacillus lipase genes (Ll and B26) pre-mature parts, and Proteus lipase gene (K80) mature part only. In addition, the molecular sizes of their mature parts were quite different from 19,000 to 45,000. Finally, they had very little homology (less than 20%) in their amino acid sequences. Judging from the above results, lipase K80 belonged to bacterial lipase Group I, lipase L1 and lipase B26 Group III, and lipase L62 and lipase B56 Group IV. This diversity in their primary structures was also reflected in their enzymatic properties; temperature effects, pH effects, substrate specificity, detergent effects, and so on.
-
Regulation of pyrimidine nucleotide synthesis has been studied extensively in enteric bacteria and Bacillus species. Varieties of control modes have been proposed for regulation of pyrimidine nucleotide biosynthetic (pyr) genes. In Bacillus caldolyticus and B. subtilis, it has been proved that pyrimidine de novo biosynthetic operon is controlled by a regulatory protein PyrR-mediated attenuation. Another Gram-positive bacteria including Enterococcus faecalis, Lactobacillus plantarum, and wctococcus lactis have been found to constitute a pyr gene cluster containing the pyrR gene. In addition, it has been proposed that the structure of the 5' leader region of the Gram-negative extreme thermophile Thermus strain Z05 pyr operon provides a novel mechanism of PyrR-dependent coupled transcription-translation attenuation. Bacterial genome sequencing projects have identified the PyrR homologues in Haemophilus influenzae, Synechocystis sp., Mycobacterium tuberculosis, Streptococcus pneumoniae, S. pyogenes, and Clostridium acetobutylicum, which are currently investigating for their physiological functions.
-
Kang, Dae-Ook;Lee, Jun-Won;Ahn, Soon-Cheol;Oh, Won-Keun;Kim, Min-Soo;Mheen, Tae-Ick;Ahn, Jong-Seog 171
-
-
Two intracellular enzymes, cellobiose phosphorylase (CBP) and cellodextrin phosphorylase (CDP) are involved in the phosphorolytic pathway in cellulose degradation. Those enzymes are considered to be useful in syntheses of oligosaccharides because the reactions are reversible. CBP from Cellvibrio gilvus and CDP from Clostridium thermocellum YM-4 were cloned and over-expressed in Escharichia coli. Both the enzyme reactions showed ordered bi bi mechanism. Acceptor specificity of CBP in the reverse reaction was determined. Several
$\beta$ -l,4-glucosyl disaccharides were synthesized by using the reaction. A new substrate inhibition pattern, competitive substrate inhibition, was also found in the reverse reaction of CBP Cellobiose was produced from sucrose at a high yield by a combined action of three enzymes including CBP