This study analyzed and compared development mechanisms leading to heat waves of 2016 and 2018 in Korea. The European Centre for Medium-Range Weather Forecasts Reanalysis Interim (ERA Interim) dataset and Automated Surface Observing System data are used for synoptic scale analysis. The synoptic conditions are investigated using geopotential height, temperature, equivalent potential temperature, thickness, potential vorticity, omega, outgoing longwave radiation, and blocking index, etc. Heat waves in South Korea occur in relation to Western North Pacific Subtropical High (WNPSH) pressure system which moves northwestward to East Asia during summer season. Especially in 2018, WNPSH intensified due to strong large-scale circulation associated with convective activities in the Philippine Sea, and moved farther north to Korea when compared to 2016. In addition, the Tibetan high near the tropopause settled over Northern China on top of WNPSH creating a very strong anticyclonic structure in the upper-level over the Korean Peninsula. Unlike 2018, WNPSH was weaker and centered over the East China Sea in 2016. Analysis of blocking indices show wide blocking phenomena over the North Pacific and the Eurasian continent during heat wave event in both years. The strong upper-level ridge which was positioned zonally near 60°N, made the WNPSH over the South Korea stagnant in both years. Analysis of heat wave intensity (HWI) and duration (HWD) show that HWI and HWD in 2018 was both strong leading to extreme high temperatures. In 2016 however, HWI was relatively weak compared to HWD. The longevity of HWD is attributed to atmosphere blocking in the surrounding Eurasian continent.