We present results of molecular dynamic (MD) simulations for the thermodynamic and structural properties of liquid n-alkanes, from n-butane to n-heptadecane, using three different models Ⅰ-Ⅲ. Two of the three classes of models are collapsed atomic models while the third class is an atomistically detailed model. Model Ⅰ is the original Ryckaert and Bellemans' collapsed atomic model [Discuss. Faraday Soc. 1978, 66, 95] and model Ⅱ is the expanded collapsed model which includes C-C bond stretching and C-C-C bond angle bending potentials in addition to Lennard-Jones and torsional potentials of model Ⅰ. In model Ⅲ all the carbon and hydrogen atoms in the monomeric units are represented explicitly for the alkane molecules. Excellent agreement of the results of our MD simulations of model Ⅰ for n-butane with those of Edberg et al.[J. Chem. Phys. 1986, 84, 6933], who used a different algorithm confirms the validity of our algorithms for MD simulations of model Ⅱ for 14 liquid n-alkanes and of models Ⅰ and Ⅲ for liquid n-butane, n-decane, and n-heptadecane. The thermodynamic and structural properties of models Ⅰ and Ⅱ are very similar to each other and the thermodynamic properties of model Ⅲ for the three n-alkanes are not much different from those of models Ⅰ and Ⅱ. However, the structural properties of model Ⅲ are very different from those of models Ⅰ and Ⅱ as observed by comparing the radial distribution functions, the average end-to-end distances and the root-mean-squared radii of gyrations.