The purposes of this study were to inform the exemplary models of integrated science and mathematics and to analyze and discuss their similarities and differences of the models. There were two steps to select the exemplary models of integrated science and mathematics. First, the second volume (Berlin & Lee, 2003) of the bibliography of integrated science and mathematics was analyzed to identify the models. As a second step, we selected the models that are dealt with in the School Science Mathematics journal and were cited more than three times. The findings showed that the following four exemplary theoretical models were identified and published in the SSM journal: the Berlin-White Integrated Science and Mathematics (BWISM) Model, the Mathematics/Science Continuum Model, the Continuum Model of Integration, and the Five Types of Science and Mathematics Integration. The Berlin-White Integrated Science and Mathematics (BWISM) Model focused an interpretive or framework theory for integrated science and mathematics teaching and learning. BWISM focused on a conceptual base and a common language for integrated science and mathematics teaching and learning. The Mathematics/Science Continuum Model provided five categories and ways to clarify the extent of overlap or coordination between science and mathematics during instructional practice. The Continuum Model of Integration included five categories and clarified the nature of the relationship between the mathematics and science being taught and the curricular goals for the disciplines. These five types of science and mathematics integrations described the method, type, and instructional implications of five different approaches to integration. The five categories focused on clarifying various forms of integrated science and mathematics education. Several differences and similarities among the models were identified on the basis of the analysis of the content and characteristics of the models. Theoretically, there is strong support for the integration of science and mathematics education as a way to enhance science and mathematics learning experiences. It is expected that these instructional models for integration of science and mathematics could be used to develop and evaluate integration programs and to disseminate integration approaches to curriculum and instruction.